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Elementary Network 

Theorems

 2.1   INTRODUCTION

In Chapter 1, we have studied basic network concepts. In network analysis, we have to fi nd currents and 

voltages in various parts of networks. In this chapter, we will study elementary network theorems like 

Kirchhoff’s laws, mesh analysis and node analysis. These methods are applicable to all types of networks. 

The fi rst step in analyzing networks is to apply Ohm’s law and Kirchhoff’s laws. The second step is the 

solving of these equations by mathematical tools.

 2.2    KIRCHHOFF’S LAWS

The entire study of electric network analysis is based mainly on Kirchhoff’s laws. But before discussing this, 

it is essential to familiarise ourselves with the following terms:

 Node       A node is a junction where two or more network elements are connected together.

 Branch An element or number of elements connected between two nodes constitute a branch.

 Loop        A loop is any closed part of the circuit.

 Mesh      A mesh is the most elementary form of a loop and cannot be further divided into other loops. 

      All meshes are loops but all loops are not meshes.

1.   Kirchhoff’s Current Law (KCL) The algebraic sum of currents 

meeting at a junction or node in an electric circuit is zero.

Consider fi ve conductors, carrying currents I1, I2, I3, I4 and I5 

meeting at a point O as shown in Fig. 2.1. Assuming the incoming 

currents to be positive and outgoing currents negative, we have

I I I

I I I I I

I I I I I
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+I3I +I2I

( )I2I ( )I4I4I

Thus, the above law can also be stated as the sum of currents fl owing towards any junction in an 

electric circuit is equal to the sum of the currents fl owing away from that junction.

2.   Kirchhoff’s Voltage Law (KVL) The algebraic sum of all the voltages in any closed circuit or mesh 

or loop is zero.

If we start from any point in a closed circuit and go back to that point, after going round the circuit, 

there is no increase or decrease in potential at that point. This means that the sum of emfs and the sum of 

voltage drops or rises meeting on the way is zero.

I1

I2

I3

I4
I5

O

Fig. 2.1 Kirchhoff ’s current law
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3.  Determination of Sign A rise in potential can be assumed to be positive while a fall in potential can 

be considered negative. The reverse is also possible and both conventions will give the same result.

 (i) If we go from the positive terminal of the battery or source to the negative terminal, there is a fall in 

potential and so the emf should be assigned a negative sign (Fig. 2.2a). If we go from the negative 

terminal of the battery or source to the positive terminal, there is a rise in potential and so the emf 

should be given a positive sign (Fig. 2.2b).

(a) Fall in potential (b) Rise in potential

Fig. 2.2 Sign convention

(ii) When current fl ows through a resistor, there is a voltage drop across it. If we go through the resistor 

in the same direction as the current, there is a fall in the potential and so the sign of this voltage 

drop is negative (Fig. 2.3a). If we go opposite to the direction of the current fl ow, there is a rise in 

potential and hence, this voltage drop should be given a positive sign (Fig. 2.3b).

(b) Rise in potential(a) Fall in potential

I I++

Fig. 2.3 Sign convention

  Example 2.1  In Fig. 2.4, the voltage drop across the 15 W resistor is 30 V, having the polarity 

 indicated. Find the value of R.

5 A

2 A

3 A

100 V

30 V15 Ω

5 Ω

−+

+

−

−

+

I

R

Fig. 2.4

Solution Current through the 15 Ω resistor

I = =
30

15
2 A

Current through the i A5 5resisto 2 7Ω iresistor

Applying KVL to the closed path,

− − + − =
− − + − =

= Ω

5 100 30 0

35 2 100 30 0

17 5

( )7 ( )2

.

R

R

R
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  Example 2.2  Determine the currents I1, I2 and I3 in Fig. 2.5.

9 A 4 A
12 Ω 16 Ω8 Ω

I3I2

I1

Fig. 2.5

Solution Assigning currents to all the branches (Fig. 2.6),

9 A 4 A
12 Ω 16 Ω8 Ω

I3I2

I1

(I1 − I2 + 9 + I3 + 4)

(I1 − I2)

(I3 + 4)

Fig. 2.6

From Fig. 2.6,

 

…(i)
            

I I I

I I

1 1I I 2 3

2 3I

9 4I3I

13

−I1II

=I3I

…(ii)

Also,

 

−
−

− =

12 8 0=
20 8 0=

12 16 0

1 8

1 28

1 316

I 81 − 8

I + 81 + 8

I I161 3−16

( )−1 2

…(iii)and

Solving Eqs (i), (ii) and (iii),
   

           
      

I

I

I

1

2

3

4

10

3

=
=
= −

A

A

A

  Example 2.3  Find currents in all the branches of the network shown in Fig. 2.7.

30 A

70 A

120 A

60 A

60 A

80 A

0.02 Ω

0.01 Ω

0.01 Ω

0.02 Ω

0.01 Ω 0.03 Ω

Fig. 2.7
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Solution Let I xAF

Then
I x

I x

I x

FE

ED

DC

−x

+x

−x

30

40

80

I x

I x

CB

BA

−x

−x

20

80

Applying KVL to the closed path AFEDCBA

(Fig. 2.8), 

− − − −0 02 0 01 0 4+ 0 03 0 20 02. .02 0 ( )− 30 . (01 ) .0) 0 ( )− 80 . (01 ) .0) 0 (0− 01.0 ( 03x 4+ 0 .0− ( x02x 2− 0 .0− ( 8088 0) =

x

I

I

AF

FE

=
=

= − =

41

41

41 30 11

A

A

A

I

I

I

ED

DC

CD

= + =

= − = −

=

41 40 81

41 80 39

39

A

A

A

I

I

I

CB

BA

AB

= − =
= − = −
=

41 20 21

41 80 39

39

A

A

A

  Example 2.4  Find currents in all the branches of the network shown in Fig. 2.9.

1 A

1 A

4 Ω

3 Ω
5 Ω

2 Ω

1 Ω

B C

AO

Fig. 2.9

Solution Assigning currents to all the branches (Fig. 2.10),

Applying KVL to the closed path OBAO,

  

− =
=

2 3 1+ 0

3 3 2

( )−1 ( )x y− 3)

x y3−
                 

…(i)

Applying KVL to the closed path ABCA, 

  

3 4 5 0

9 12 4

y 4 5

x y1

4 =
12y12

( )1 x1 y1 ( )x y+ y

               
…(ii)

30 A
x

F

A

B

E

D

C

70 A

120 A

60 A

60 A

80 A

0.02 Ω

0.01 Ω

0.01 Ω

0.02 Ω

0.01 Ω 0.03 Ω

(x − 30)

(x + 40)

(x − 80)

(x − 20)

(x − 80)

Fig. 2.8

1 A

1 A

4 Ω

3 Ω
5 Ω

2 Ω

1 Ω

B

C

AO x1 Ω

y

(1 −x − y)

(1 −x )

(x + y)

Fig. 2.10
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Solving Eqs  (i) and (ii),

           
y

=
= −

0 57

0 095.

A

A

     

I

I

OA

OB

=
= =

0 57

1 0− 57 0 43. .57 0

A

A

  

I

I

I

AB

AC

BC

=
= =
= + =

0 095

0 57 0− 095 0 475

1 0− 57 0 095 0 525

.

. .57 0 .

. .+57 0 .

A

A

A

  Example 2.5  What is the potential difference between points x and y in the network shown in Fig. 2.11?

2 V

4 V

4 V2 Ω

3 Ω 3 Ω 5 Ω
I1

I2

x

y

+

+

−

−
+

+−

−

Fig. 2.11

Solution I

I

1

2

2

2 3
0 4

4

3 5
0 5

= =

= =

A

A

Potential difference between points andx yand V V VxyVV x yVV= V −

Writing KVL equation for the path x to y,

  

V

V

x yV IV V

x yV VV

3 4I +II 3 0I VyVV =

3 4 0 0VyVV =

−4+ 3III

(0 ) (4 3 )5

                      

V V

V

x yV VV V

xyVV

=V −

= −

3 7

3 7. V7

  Example 2.6  Find the voltage between points A and B in Fig. 2.12.

20 V

5 V 15 V12 Ω

10 Ω 4 Ω

5 Ω

6 Ω
I1

A

B

I2

Fig. 2.12
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Solution I

I

1

2

20

10 5
1 33

15

4 6
1 5

=
+

=

= =

A

A

From Fig. 2.13,      

Voltage between points andA Band V V VABV A BV VV= VV

Writing KVL equation for the path A to B,

V I

V V

A BV I VV

A BV VV

+
=VBVV

5III 15 6 0I VBI VV =VBVV

33 1 0

I

( .1 ) (1 6 . )

V V

V

A BV VV

ABV

=VBVV

=
17 65

17 65

.

. V65

  Example 2.7  Determine the potential difference VAB for the given network in Fig. 2.14.

8 V5 V

2 A

2 Ω

10 Ω

5 Ω 4 Ω

3 Ω A

B

Fig. 2.14

Solution The resistor of 3 Ω is connected across a short circuit. Hence, it gets shorted (Fig. 2.15).

5 V 8 V

2 A

2 Ω

10 Ω

4 Ω

I1 I2

A

B

+

−

5 Ω

+

−

Fig. 2.15

   

I

I

1

2

5

2
2

2

= =

=

. A5

A

Potential difference                     V V VABV A BV VVVAV

Writing KVL equation for the path A to B,

V

V V

A BV I VV

A BV VV =
2 8II +II 5 0I VBI VV =

2 5 2 0

II

( .2 ) (8 5 )

20 V

5 V 15 V12 Ω

10 Ω 4 Ω

5 Ω

6 Ω
I1

A

B

I2

+
+

−

−

+

−
−

+

Fig. 2.13
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V V

V

A BV VV

ABV

=VBVV

=
7

7V

  Example 2.8  Find the voltage of the point A w.r.t. B in Fig. 2.16.

10 V

5 A

8 V

5 Ω

4 Ω3 Ω

A

B

+

−

3 Ω
+

−

I1 I2

Fig. 2.16

Solution             I

I

1

2

10

5 3
1

5

= =

=

. A25

A

Applying KVL to the path from A to B,

  

V

V

A BV I VV

A BV VV

+3 8III 3 0I VBVVII =
3 25 0VBVV =5

I

( .1 ) (8 3 ))

            

V V

V

A BV VV

ABV

=VBVV −
= −

3 25

3 2. V25

  Example 2.9  In Fig. 2.17, what values must R1 and R2 have

when I(a) 1 = 4 A and I2 = 6 A both charging?

when I(b) 1 = 2 A discharging and I2 = 20 A charging?

when I(c) 1 = 0?

110 V

80 V 50 V

2 Ω

I1

(I1 + I2)

I2

R2R1

b

a f e

c d

Fig. 2.17

Solution Applying KVL to the closed path abcfa,

  

110 2 80 0

110 2 2 80 0

2 30

1 1

1 2 1 1

1 2

− 2

− 2 −1− =
=

( )1 2

( )2 1

I21 2 R1 11R I1 11 1

I
 

…(i)

Applying KVL to the closed path fcdef,

      

80 50 0

30

1 1 2 2

1 1 2 2

−1+ − =50

− =2 −
R I1 11 R I22

R I1 11 R I222  …(ii)
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Case (a) I1 = 4 A and I2 = 6 A both charging

i.e.                  I1 = 4 A and I2 = 6 A

Substituting I1 and I2 in Eq. (i),

            (2 + R1) 4 + 2 (6) = 30

                   R1 = 2.5 Ω
Substituting R1, I1 and I2 in Eq. (ii),

          2.5 (4)−R2 (6) = −30

              R2 = 6.67 Ω
Case (b) I1 = 2 A discharging and I2 = 20 A charging

i.e.              I1 = −2 A and I2 = 20 A

Substituting I1 and I2 in Eq. (i),

 (2 + R1) (−2) + 2 (20) = 30

           R1 = 3 Ω
Substituting R1, I1 and I2 in Eq. (ii),

         3 (−2) − R2 (20) = −30

           R2 = 1.2 Ω
 Case (c) I1 = 0

Substituting in Eq. (i)

      (2 + R1) (0) + 2 I2 = 30

         I2 = 15 A

Substituting I1 and I2 in Eq. (ii),

         0 − 15 R2 = −30

              R2 = 2 Ω

  Example 2.10  In Fig. 2.18,  fi nd I1 and I2 when (a) R = 2.3 W, (b) R = 0.5 W, and (c) for what values 

of R is I1 = 0?

130 V

110 V

0.2 Ω

0.2 Ω

I1

(I1 + I2)

I2

R

b

a d f

c e

Fig. 2.18

Solution Applying KVL to closed path abcda,

130 0 2 110 0

0 4 0 2 20

1 2 1

1 2

− 0 −2 1 =
=2

. (22 ) .0− 0

.4 1 0

I I1 +1 I11

I I0 21 + 0 20 21 0 …(i)

Applying KVL to the closed path dcefd,

          

110 0 2 0

0 2 110

1 2

1 2

+ 0 2 =
=2 −

I R1 −1 I

I R1 I  …(ii)
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Case (a) R = 2.3 Ω
Substituting R in Eq. (ii),

   
0 2 2 3 1101 23.2 1 2I I2 31 2 31 2 =2I2 32 3 −

 …(iii)

Solving Eqs  (i) and (iii),

           

I

I

1

2

25

50

=
=

A

A

Case (b) R = 0.5 Ω
Substituting R in Eq. (i),

          
0 2 0 5 1101 25.2 1 0I I0 51 0 51 0 =2I0 50 5 −

 …(iv)

Solving Eqs  (i) and (iv),

            

I

I

1

2

50

200

= −
=

A

A

Case (c) I1 0=
Substituting I1 in Eq. (i),

            

0 2 20

100

2

2

I

I

=
= A

Substituting I1 and I2 in Eq. (ii),

    

0 0 100 110. (2 ) ( )

.

=100( ) −
= Ω1 1R

  Example 2.11  In Fig. 2.19, fi nd the value of R.

80 V

3 A

10 Ω

14 Ω R

Fig. 2.19

Solution Assigning currents to all the branches (Fig. 2.20),

Applying KVL to the closed path abcda,

 

80 10 14 0

5

−10

=
I 14−

I

( )3− 3I

. A08

Applying KVL to the closed path dcefd,

 

14 3 0

14 08 3 3 0

9 7

( )3

( .5 )

R33

R

3 =
−3)

= Ω9 71

80 V

3 A10 Ω

14 Ω R

cb e

da f

I

(I − 3)

Fig. 2.20
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  Example 2.12  Determine current drawn by the ammeter shown in Fig. 2.21.

9 V

A

10 Ω

5 Ω
30 Ω

5 Ω

Fig. 2.21

Solution Assigning currents to all the branches (Fig. 2.22),

Applying KVL to the closed path abcda,

    

− − − =
=

5 9+ 10 30 0

45 15 9

1

1 25

( )1 2 ( )1 2++ +1 + I1

I I+151 + …(i)

Applying KVL to the closed path dcefd,

30 5 01 25I 51 555 …(ii)

Solving Eqs  (i) and (ii),

I2 0= . A4

Current drawn by ammeter = 0.4 A

  Example 2.13  Find branch currents in the various branches of Fig. 2.23.

10 Ω

0.1 Ω 0.2 Ω
5 Ω

20 Ω

4 V2 V

Fig. 2.23

Solution Assigning currents to various branches (Fig. 2.24),

Applying KVL to the closed path abcda,

   

2 0 0

15 1 5 2

1 2

1 25

0 =
=2

. (1 10 51 101 5 )

.

101 10 I I11

I5555  
…(i)

Applying KVL to the closed path dcefd,

5 20 0 2 4 0

5 2 2 4

2 20

1 25

( )1 2 0 20 2

I25 225 2

0 2 =
=2I25 225 2 …(ii)

Solving Eqs  (i) and (ii),

I

I

1

2

0 086

0 142

=
= −

.

.

A

A

9 V

A

10 Ω

5 Ω
30 Ω

5 Ωcb e

fda

(I1 + I2)

I1 I2

Fig. 2.22

10 Ω

0.1 Ω 0.2 Ω
5 Ω

20 Ω

4 V2 V

cb e

fda

(I1 − I2)

I1 I2

Fig. 2.24
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  Example 2.14  In Fig. 2.25, fi nd the value of R and current fl owing through it when the current is 

zero in the branch OA.

1.5 Ω

480 Ω

1 Ω

4 Ω

2 Ω10 V

R

CB

O

A

Fig. 2.25

Solution Assigning currents to all branches (Fig. 2.26),

Applying KVL to the closed path OACO,

   
480 1 03 11 3 2 3I I13 11 I3 I I3−111 2I2 =(55(5555 ) () (RR )

But current in the branch OA is zero,

i.e. 

              

I

I R I

3

1 2R I

0

1 5 0

=
− I1 5 =  …(i)

Applying KVL to the closed path BOCB,

 − + =4 2 10 02 2−− ( )2 3+ ( )1 2I I+1

But           I

I

3

1 2

0

2 I1 10

=
−2 I =I2I −( )R6 RR

 

...(ii)

Applying KVL to the closed path BOAB,

            
− + =4 480 02 3480 1I I+ 4802 3+ 480 I

But

 

I

I I

3

2 1

1 2I I

0

4 0I I2 1II

4

=
−4 I

…(iii)

Substituting I1 in Eq. (i) and (ii), 

…(iv)

and              

−
− = −

6 0=
10

2 2

2 2

++
I R2 − I14  …(v)

From Eq. (iv) and (v),

                    
I2 0= . A5

Substituting I2 in Eq. (iv),

                 

−
= Ω

6 5 0 0=
6

( .0 ) (+ . )5

R

Current in branch    OC I I= I =2 3I 0. A5

1.5 Ω

480 Ω

1 Ω

4 Ω

2 Ω10 V

R

CB

O

A

(I1 − I3)

(I2 + I3)

(I1 + I2)

I3

I1

I2

Fig. 2.26
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  Example 2.15  In Fig. 2.27, fi nd the current supplied by the battery.

2 Ω

4 Ω 3 Ω

5 Ω

6 Ω 2 Ω

50 V

Fig. 2.27

Solution Assigning currents to all the branches (Fig. 2.28),

Applying KVL to the closed path OABEDO,

50 2 6 4 0

12 2 4 50

1

1 2 3

− 2 6

=
( )1 2 ( )1 3I 41 41

I 21 + 22 I3 …(i)

Applying KVL to the closed path BCEB,

− +
+

2 5 6 0=
6 2 5 0=

2 35 1

1 2 3

I5+ 35+
I22− …(ii)

Applying KVL to the closed path ECDE,

−
− =

5 3 4 0=
4 3 12 0

3 3

1 23 3

33− + 4+ 4

I33− I3

( )+2 3I I ( )−1 3

…(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

2 817

6 647

0 723

=
=
= −

.

.

.

A

A

A

Current supplied by the battery A= = + =I I+1 2I I+ 2 817 6 647 9 464. .+8 7 6 .

  Example 2.16  In Fig.2.29, fi nd the current fl owing through the 2 W resistor.

16 Ω

16 Ω 32 Ω

2 Ω

20 V 20 V

Fig. 2.29

2 Ω

4 Ω 3 Ω

5 Ω

6 Ω
2 Ω

50 V

(I1 − I3)

(I1 + I2)

I1

I3

I2

(I2 + I3)

A

O
D

C

B

E

Fig. 2.28
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Solution Assigning currents to all the branches (Fig. 2.30),

Applying KVL to the closed path OABFGO,

      16 0

− I

I  …(i)

Applying KVL to the closed path BCFB,

   + =
0

48 32 0

1

− I

−1

…(ii)

Applying KVL to the closed path GFCDEG,

    20− = …(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

1 05

6 32

1 58

=
=
=

A

A

A

Current through th Aresistor

  Example 2.17  In Fig. 2.31, fi nd the current through the 4 W resistor.

2 Ω

1 Ω

2 Ω

3 Ω

4 Ω

12 Ω 10 V12 V

24 V

Fig. 2.31

Solution Assigning currents to all the branches (Fig. 2.32),

Applying KVL to the closed path ABEDA,

+ =
+ = −

12 0

12 123I

1

 …(i)

Applying KVL to the closed path BCFEB,

0

− = 0

− +− I − 3I

 …   (ii)

Applying KVL to the closed path DEFHGD,

 

−
− = −

1 3 + 4 0

+ 24

( )

  …(iii)

16 Ω 32 Ω

2 Ω

20 V 20 V

F

O

A
B C

 
D

G E

I3

(I1 + I )

(I1 − I )

(I1 + I − I )

I

Fig. 2.30

1 Ω

2 Ω

3 Ω

4 Ω

12 Ω 10 V12 V

24 V

BA

G H

C

D F

I

I

I

(I2 I3)

(I1  I3)(I1 − I )

Fig. 2.32
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Solving Eqs  (i), (ii) and (iii),

I

I

I

1

1

3

4 11

2 72

2 06

=
=
=

. A

A

A

Current through the resisto A4 1Ω iresistor .

  Example 2.18  In Fig. 2.33, fi nd the current through the 10 W resistor.

5 Ω 10 Ω 12 Ω

15 Ω 8 Ω 6 V4 V

Fig. 2.33

Solution Assigning currents to all the branches (Fig. 2.34),

Applying KVL to the closed path ABGHA,

                

− =
−

5 1− 5 4+ 0

20 5 4= −
1

1 25

( )1 2++
I 51 − 5  …(i)

Applying KVL to the closed path BCFGB,

                         

−
−

10 8 1+ 5 0=
15 10 8 0=

2 38 1

1 210 3

I 82 − 8

I I101 −10  …(ii)

Applying KVL to the closed path CDEFC,

       

− − =
− =

12 6 8+ 0

12 20 6

3

2 30

( )2 32 3− I3

I I+ 202 3+ 20                           …(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

0 19

0 032

0 32

=
=
=

.

A

A

A

Current through the resisto A10 0 032Ω =resistor .

  Example 2.19  In Fig. 2.35, determine the current supplied by each battery.

20 Ω

40 Ω

10 Ω

2 Ω1 Ω

8 V 12V

Fig. 2.35

15 Ω 8 Ω
6 V4 V

(I1 + I2) (5 Ω 10 Ω 12 Ω I2 − I3)
B C10 ΩI2

F EGH

A D
I1 I3

Fig. 2.34
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Solution Assigning currents to all the branches (Fig. 2.36),

Applying KVL to the closed path ADEA,

                    

=
=

40 8 1 0

40 8

2 18

1 240

I I+ 8 12 1+ 8 1−
I I+ 401 +  …(i)

Applying KVL to the closed path ABDA,

       
− − =

− − =
20 10 40 0

30 70 10 0

20

1 270 3

( )1 2 ( )+1 2 31 − 1 − I+ 40+ 40)

I I+ 701 + 70 I3 …(ii)

Applying KVL to the closed path BCDB,

2 12 10 0

10 10 12 12

3 0

1 20 3

12 1010

I I101 I3

1212

+2I1010 =
( )1 2 3

…(iii)

Solving Eqs  (i), (ii), and (iii),

I

I

I

1

2

3

0 1005

0 197

1 081

=
=
=

.

.

.

A

A

A

 Current supplied by the V battery A

Current supplied by

8 0V battery 10051 .

thtt e V battery A12 1 0813= =3I33 .

 Example 2.20  In Fig. 2.37, fi nd the value of the unknown resistance R such that 2 A current fl ows 

through it.

4 Ω2 Ω

5 Ω3 Ω10 V

2 A R

Fig. 2.37

Solution Assigning currents to all the branches (Fig. 2.38),

Applying KVL to the closed path ABCDEA,

        

−
−

2 4 2 0=
6 4 2 1= 21 24

R 4+ 2+
I44−

( )21 2−I1 I − 22 ( )− 21I

 …(i)

Applying KVL to the closed path HEDGH,

                

10 2 3 0

2 3 14

23

1 23

− 2

=2

( )1( )2 3333)21 2

I3333  …(ii)

Applying KVL to the closed path GDCFG,

         

3 4 5 0

9 12 8

2 4 5

1 212

44 55

1212

4 =
1212

( )21 2 2I1 I 22 2−11 2 ( )1 2I1 I− 2I

 …(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

1

2

3 76

2 16

=
= .

A

A  
R = Ω0 98

R = Ω0 98Unknown resistance

20 Ω

40 Ω

10 Ω

2 Ω
1 Ω

8 V 12 V

I3

I2I1

A B

C
E D

(I1 − I2)

(I1 − I2 + I3)

Fig. 2.36

4 Ω2 Ω

5 Ω3 Ω
10 V

2 A R

B

FH

A

CE

G

D (I1 − I2 − 2)(I1 − 2)

(I1 − I2)I2I1

Fig. 2.38
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  Example 2.21  In Fig. 2.39, fi nd the current delivered by the 12 V battery.

2 Ω5 Ω

4 Ω 4 Ω 12 V

3 Ω

4 Ω

Fig. 2.39

Solution Assigning currents to all the branches (Fig. 2.40),

Applying KVL to the closed path ABCDEA,

3 2 5 0

3 10 5 0

2 5

1 210 3

( )1 2 ( )2 3I 52 5

10 I3

5

01010 = …(i)

Applying KVL to the closed path HEDGH,

4 5 4 0

4 5 13 0

3

1 25 3

( )1 3 ( )2 32 3

I5 I3

−)33

−2I55 = …(ii)

Applying KVL to the closed path GDCFG,

4 2 12 4 0

4 2 4 12

3 2 1

1 2 3

I2

I2

−2I22 + 4

+2I22 …(iii)

Solving Eqs  (i), (ii), and (iii),

I

I

I

1

2

3

1 66

0 93

0 87

=
=
=

A

A

A

Current delivered by the V battery A12 1 661= =1I11

EXAMPLES WITH DEPENDENT SOURCES

  Example 2.22  In the network of Fig. 2.41, fi nd I1, I2 and V.

3 Ω 4 V2 A 6 Ω

V

I1 I2

Fig. 2.41

2 Ω5 Ω

4 Ω 4 Ω
12 V

3 Ω

4 Ω

A B

F

CE D

G
H

(I1 − I2)

(I2 − I3)

(I1 − I3)
I3

I2

I1

I1

Fig. 2.40
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Solution Applying KCL at the node,

2 4
3 6

3 6
4 2

+ =4 +

+ −

V
V V

V V
V

− =

= −

7

2
2

4

7

V

V V

I
V

I
V

1

2

3

4

21

6

2

21

= = −

= = −

A

A

  Example 2.23  Find voltages V1 and V2 in the network of Fig. 2.42.

2 Ω

6 V
V1

V2

+
−  +

+−

−

4 Ω

4 II

Fig. 2.42

Solution Applying KVL to the loop,

6 2 4 4 0

3

2 =
=

I I I4 4+ 4

I A

From Fig. 2.42,

V1 = 2 I = 2 (3) = 6 V

V2 = 4 I = 4 (3) = 12 V

  Example 2.24  Find the power delivered by the dependent source in the network of Fig. 2.43.

1 Ω

3 Ω

30 V Vx

+

−

− +

0.5 Ω

3 VxI

Fig. 2.43

From Fig. 2.43,

V IxVV 0 5

Applying KVL to the loop,

 
30 1 3 0 5 3 0

30 3 5 5 3 0

−1 − 0 5

− 5 =
I V3 I 3−

5I 3+ I3

xVV

( .0(00 ) .00
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30 3 0

10

0 10 5

− 3

=
= =0 10

I

VxVV

A

V. (55 )

Power supplied by the dependent source = (3Vx) (I) = 3 × 5 × 10 = 150 W

  Example 2.25  Find the current I2 in the network of Fig. 2.44.

4 V

8 V

16 V10 V1
V1

I2
+

−

Fig. 2.44

Solution Applying KVL to the left loop,

− − =
=

4 8+ 0

4

1

1

V1

V1 V

Applying KCL to the right part,

10 0

10 0

40

1 2

2

2

V I1

I

=2I

= −
( )4

A

  Example 2.26  Find the voltage Vx in the network of Fig. 2.45.

2 A

6 Ω

3 Ω

+

−
Vx +

−
Vy

1
6

Vy

Fig. 2.45

Solution Applying KCL at the node,

2
1

6 9
+ =V

V
yV

xVV …(i)

From Fig. 2.45,

V
V V

yVV
x xV VV V

= ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=3
9 3⎠⎠⎠

…(ii)

Substituting Eq. (ii) in Eq. (i),

2
1

6 3 9

2
18 9

0

36

+ ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

+ − =

=

V V⎞

V V

V

x x⎞⎞⎞V VV V⎞⎞⎞

x xV VV V

xVV V
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  Example 2.27  In the network of Fig. 2.46, fi nd the current I1 and power dissipated in the 500 W

resistor.
300 Ω

500 Ω50 V 0.4 I1

I1

Fig. 2.46

Solution Assigning currents to all the branches as shown in Fig. 2.47.

300 Ω

500 Ω
50 V

a

0.4 I1

0.6 I1

I1b

d

c

f

e

Fig. 2.47

Applying KVL to the closed loop abcda,

50 300 500 6 0

0

161 500

1

− 300 =
=

I6 16I 5001 5001

I1

(0(000 )

. A083

Power dissipated in the 500 Ω resistor = 500 (0.6 I1)
2  = 500 (0.6 × 0.083)2  = 1.24 W

  Example 2.28  Find the current I in the network shown in Fig. 2.48.

2 A

4 V

Vx

+
+
−

−

5 Ω

2 Ω

3 Ω
3 Vx

I

Fig. 2.48

Solution Assigning currents in all the branches as shown in Fig. 2.49.

2 A
a

4 V

(I − 2)

Vx

+
+
−

−

5 Ω

2 Ω

3 Ω
3 Vx

I

b

c

d

e

f

Fig. 2.49

From Fig. 2.49,

VxVV 2( )I 2I −I …(i)

Applying KVL to the closed loop fecdf,

3 5 4 2 0

3 2 5 4 2 0

V I5

I I2 5

xV −I5 2

2 − 4

( )2I −I

[ (2 )])] ( )2I − 2
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6 12 5 4 2 4 0

12

12

I12 5 I

I

I

12 − 4 + 4

− =I

= − A

2.3    MESH ANALYSIS

A mesh is defi ned as a loop which does not contain any other loops within it. Mesh analysis is applicable only 

for planar networks. A network is said to be planar if it can be drawn on a plane surface without crossovers. 

In this method, the currents in different meshes are assigned continuous paths so that they do not split at a 

junction into branch currents. If a network has a large number of voltage sources, it is useful to use mesh 

analysis. Basically, this analysis consists of writing mesh equations by Kirchhoff’s voltage law in terms of 

unknown mesh currents.

Steps to be Followed in Mesh Analysis

Identify the mesh, assign a direction to it and assign an unknown current in each mesh.1. 

Assign the polarities for voltage across the branches.2. 

Apply KVL around the mesh and use Ohm’s law to 3. 

express the branch voltages in terms of unknown mesh 

currents and the resistance.

Solve the simultaneous equations for unknown mesh 4. 

currents.

Consider the network shown in Fig. 2.50 which has three meshes. 

Let the mesh currents for the three meshes be I1, I2, and I3 and all 

the three mesh currents may be assumed to fl ow in the clockwise 

direction. The choice of direction for any mesh current is arbitrary.

Applying KVL to Mesh 1,

V R R

I R I R I V

1 1V RV R 2R

1 1RR 2 2R 3 1I VV

01RR − RR =
I R I2R

( )I I1 2I II ( )I I1II 3−1II

( )R R1 2RR R2R …(i)

Applying KVL to Mesh 2,

V R I R R

R I I R I V

2 3V RV R 2 4RR 1RR

1 1 2I 4 3R IR 2VV

0I3R − =
− +R I1 1R IR I − =R I3R I

( )I I2 3I3I ( )I I2I 1− I1

( )R R R1 3RR 4RR+R3RR …(ii)

Applying KVL to Mesh 3,

− − + =
− − + =

R R R I V

R I R I I V

2R 4RR− 5 3 3VV

2 1R I 4 2R IR 3 3VV

0( )−I I3I 1 ( )I I3 2I I−
( )+R R+ R2 4R RR+ 5 …(iii)

Writing Eqs  (i), (ii), and (iii) in matrix form,

R R R R

R R R R R

R R R R R

I

I

I

1 2RR 1 2R RR

1 1 3 4RR 4RR

2 4R RR 2 4R 5R

1

2

3

−R2R

− +R R1 1R RR R −R4RR

−RR +R4RR

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦⎦

⎥
⎤⎤

⎥
⎦⎦⎦⎦

⎥⎥ =
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
V

V

V

1VV

2VV

3VV

In general,

R R R

R R R

R R R

I

I

I

V

V

V

11RR 12RR 13RR

21R 22R 23R

31RR 32RR 33RR

1

2

3

1VV

2VV

3VV

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
⎡

⎣

⎢⎢
⎡⎡⎡⎡

⎢
⎣⎣

⎢⎢⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

V1

V3

V2

R3R1

R4R2

R5

I3

I2I1

Fig. 2.50
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where,  R11 = Self-resistance or sum of all the resistance of mesh 1

 R12 = R21 = Mutual resistance or sum of all the resistances common to meshes 1 and 2

 R13 = R31 = Mutual resistance or sum of all the resistances common to meshes 1 and 3

 R22 = Self-resistance or sum of all the resistance of mesh 2

 R23 = R32 = Mutual resistance or sum of all the resistances common to meshes 2 and 3

 R33 = Self-resistance or sum of all the resistance of mesh 3

If the directions of the currents passing through the common resistance are the same, the mutual resistance 

will have a positive sign, and if the direction of the currents passing through common resistance are opposite 

then the mutual resistance will have a negative sign. If each mesh current is assumed to fl ow in the clockwise 

direction then all self-resistances will always be positive and all mutual resistances will always be negative.

The voltages V1, V2 and V3 represent the algebraic sum of all the voltages in meshes 1, 2 and 3 respectively. 

While going along the current, if we go from negative terminal of the battery to the positive terminal then its 

emf is taken as positive. Otherwise, it is taken as negative.

  Example 2.29  Find the current through the 5 W resistor is shown in Fig. 2.51.

10 V

5 V

20 V

1 Ω 2 Ω

3 Ω

6 Ω 4 Ω

5 Ω

Fig. 2.51

Solution Assigning clockwise currents in three meshes as shown in Fig. 2.52.

Applying KVL to Mesh 1,

10 1 3 6 0

10 3 6 101 23 3

−1

=
3 6−

I 31 33 I3

1 ( )1 2I1 I22 ( )1 3

…(i)

Applying KVL to Mesh 2,

− =
−

3 2− 5 5− 0

3 10 5= −
2 25

1 210

( )2 1− I 52 − 5

1+ 01+ 0 …(ii)

Applying KVL to Mesh 3,

− −
−

6 5+ 4 2+ 0 0=
6 10 2= 5

3

1 30

( )3 1−
1+ 01+ 0 …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

10 3 6

3 10 0

6 0 10

10

5

25

1

2

3

−3

−
−

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ = −
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
I1

I

I3

We can write matrix equation directly from Fig. 2.52,

R R R

R R R

R R R

I

I

I

V

V

V

11RR 12RR 13RR

21R 22R 23R

31RR 32RR 33RR

1

2

3

1VV

2VV

3VV

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
⎡

⎣

⎢⎢
⎡⎡⎡⎡

⎢
⎣⎣

⎢⎢⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

1 Ω 2 Ω

3 Ω

5 V

20 V

I1

I2

I3

10 V

6 Ω

5 Ω

4 Ω

Fig. 2.52
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where  R11 = Self-resistance of Mesh 1 = 1 + 3 + 6 = 10 Ω
 R12 = Mutual resistance common to meshes 1 and 2 = −3 Ω

Here, negative sign indicates that the current through common resistance are in opposite direction.

 R13 = Mutual resistance common to meshes 1 and 3 = −6 Ω
Similarly,

 

R

R

R

21R

22R

23R

3

3 2 5 10

0

= − Ω
= 3 =5 Ω
=

R

R

R

31RR

32RR

33RR

6

0

6 4 0

= − Ω
=
= 6 = Ω10

For voltage matrix,

             

V

V

1VV

2VV

10

5

=
= −

V

V

                                                                                                                                  V3 = algebraic sum of all the voltages in mesh 3 = 5 + 20 = 25 V

Solving Eqs  (i), (ii) and (iii),

I

I

1

2

4 27

0 78

=
=

. A

A

  

I

I I

3

5 2I

5 06

0 78

=
=I2I

A

A

  Example 2.30  Find the current through the 2 W resistor of the network shown in Fig. 2.53.

10 V

20 V

6 Ω 2 Ω

1 Ω 3 Ω 10 Ω

Fig. 2.53

Solution Assigning clockwise currents in three meshes as shown in Fig. 2.54,

Applying KVL to Mesh 1,

               

10 6 1 0

7 10

1

1 2

− 6 =11( )1 22−I1 I

…(i)

Applying KVL to Mesh 2,

      

−
− =

1 2− 3 0=
6 3− 0

2 3

1 26 3

( )2 1 ( )−2 3− I 32 − 3

I + 61 + 6 I3  
…(ii)

Applying KVL to Mesh 3,

  

−
−

3 1− 0 2− 0 0=
3 13 2= − 0

3

2 33

( )3 2−
1+ 31+ 3 …(iii)

Solving Eqs  (i), (ii) and (iii),

                            

I

I

1

2

1 34

0 62

=
= −

A

A

10 V

20 V

6 Ω 2 Ω

1 Ω

I1

3 Ω 10 Ω

I2 I3

Fig. 2.54
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I

I I

3

2 2I

1 68

0 62

= −
=I2I −

A

A

  Example 2.31  Determine the current through the 5 W resistor of the network shown in Fig. 2.55.

8 V

10 V

12 V

2 Ω 3 Ω

5 Ω

1 Ω 4 Ω

Fig. 2.55

Solution Assigning clockwise currents in three meshes as shown in Fig. 2.56.

Applying KVL to Mesh 1,

       

8 1 2 0

3 2 81 2 3

1 − 2

=
( )1 2 ( )1 311

I3  
…(i)

Applying KVL to Mesh 2,

  

10 4 3 1 0

8 3 10

2 3

1 28 3

− 4

− =3 3

33 11

I 81 + 88 I3

( )2 3−I I33 ( )2 1

 
…(ii)

Applying KVL to Mesh 3,

− −
− + =

2 3− 5 1+ 2 0=
2 3 10 12

3

1 23 3

( )3 1 ( )3 2− 3 −
I33− I …(iii)

Solving Eqs  (i), (ii), and (iii),

I

I

1

2

6 01

3 27

=
=

A

A

I

I I

3

5 3I

3 38

3 38

=
=I3I

A

A

  Example 2.32  Find the current supplied by the battery of the network shown in Fig. 2.57.

4 V

I1

I2

I3

3 Ω

1 Ω
2 Ω

6 Ω4 Ω

5 Ω

Fig. 2.57

8 V

10 V

12 V

2 Ω 3 Ω

5 Ω

1 Ω
4 Ω

I1 I2

I3

Fig. 2.56



2.24 Network Analysis and Synthesis

Solution

Applying KVL to Mesh 1,

4 3 1 4 0

8 4 4
1

1 2 3

3 =
=

I 11 11 44

I3

( )1 2 ( )1 3− 3I1 I33

…(i)

Applying KVL to Mesh 2,

   

−
− =

2 5 1 0=
8 5− 0

2 5 1

1 28 3

55− 1−1

I + 81 + 8 I3

( )−2 3I I3 ( )−2 1

 
…(ii)

Applying KVL to Mesh 3,

  

−
− + =

6 4 5 0=
4 5 15 0

3 4 5

1 25 3

44− 5− 5

I55− I

( )−3 1I3 I1 ( )−3 2

 …(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

0 66

0 24

0 26

=
=
=

A

A

A

Current supplied by the battery = I1 = 0.66 A.

  Example 2.33  Find the current through the 4 W resistor in the network of Fig. 2.58.

8 V
6 V

2 Ω 2 Ω

2 Ω

4 Ω

2 Ω2 Ω

I1

I2

I3

Fig. 2.58

Solution Applying KVL to Mesh 1,

         

8 2 2 2 0

6 2 2 8

1

1 22 3

2 =
−2

I 21 21 22

I222

( )1 2 ( )1 3− 3I1 I33

…(i)

Applying KVL to Mesh 2,

  

− =
− −

2 2− 4 6− 0

2 8 4 6= −
2

1 28 3

( )2 1 ( )−2 3− I 42 − 4

I8+ 8+  
…(ii)

Applying KVL to Mesh 3,

   

− − =
− +

2 6+ 4 2− 0

2 4 8 6=
3

1 2 3

( )3 1 ( )3 2− − I3

I41 4−  
…(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

2

0 5

1 5

=
=
=

A

A

A

I I I4 3I 2 1 5 0 5 1−I3I = −1 5 =. .5 0 A
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  Example 2.34  Determine the voltage V which causes the current I1 to be zero in the network 

of Fig. 2.59.

20 V

6 Ω

2 Ω

5 Ω 4 Ω

3 Ω

V

I1

I3

I2

1 Ω

Fig. 2.59

Solution Applying KVL to Mesh 1,

 

20 6 2 5 0

13 2 5 20

1 5

1 22 3

− 6

1 =3

22 55 V

V I13 1+13 1 I5 35 3

( )1 2−I1 I22 ( )1 33

 
…(i)

Applying KVL to Mesh 2,

 

−
+ =

2 3− 1 0=
2 6 0

2

1 26 3

( )2 1 ( )−2 3− I 12 −1

I66− I3  
…(ii)

Applying KVL to Mesh 3,

 

−1 4− 5 0=
5 1+ 0 0=

3 − 5

1 2+ 3

( )3 2 ( )3 1− I V+3 + −
V I+ 5 1 1− 0  

…(iii)

Putting I1 = 0 in Eqs  (i), (ii) and (iii),

 

V I I

V I I

=
−

−I =

2 5II 20

6 0I II =
10 0

2 3I5−

2 3I

2 3I−10  …(iv)

Solving Eqs  (i), (ii) and (iii),

 V = 43.7 V

  Example 2.35  Find the current through the 2 W resistor in the network of Fig. 2.60.

6 A
12 Ω

3 Ω

2 Ω

36 V
9 V

6 Ω

I1 I2 I3

Fig. 2.60

Solution Mesh 1 contains a current source of 6 A. Hence, we can write current equation for mesh 1. Since 

direction of current source and mesh current I1 are same,

                  
I1 6=

 
…(i)
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Applying KVL to Mesh 2,

36 12 6 0

36 12 6 6 0

18 6 108

26 3

2 36

−12 − 6

−12 +2

=3

( )2 1 ( )2 3

( )2 6( )6

2 12

I666662 62

I I62 366 36 …(ii)

Applying KVL to Mesh 3,

                

− =6 3− 2 9− 0

6 11 9=
3 32

2 31

( )3 2− I 23 − 2

111− 1  
…(iii)

Solving Eqs  (ii) and (iii),

                   

I

I I

3

2 3I

3

3

=
=I3I

A

A

 Example 2.36  Determine the mesh currents I1, I2 and I3 in the network of Fig. 2.61.

30 V

50 V
1 A I3

I2

I1 6 Ω

5 Ω

15 Ω

10 Ω

Fig. 2.61

Solution Applying KVL to Mesh 1,

            

− −
= −

30 6 15 0=
21 15 30

1 5

1 215

151− 5

I I151 − 15

( )−1 2

 …(i)

Applying KVL to Mesh 2,

− − + −
− − =

10 15 50 5 0=
15 30 10 50

2

1 230 3

( )2 3 ( )2 12 3− 2 1−
I I+ 301 + 30 I3 …(ii)

For Mesh 3,

   I3 1=  
…(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

0

2

1

=
=
=

A

A

 Example 2.37  Find the current through the 5 W resistor in the network of Fig. 2.62.

3 A

3 A4 A

2 Ω

5 Ω 2 Ω

2 V

I2

I3I1 I4

Fig. 2.62
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Solution Writing current equations for Meshes 1, 2 and 4,

I1 4= (i)

I2 3= (ii)…

I4 3= − iii)…(

Applying KVL to Mesh 3,

− − =5 2− 2 2− 0( )3 1 ( )3 2 ( )3 4− 3 − − …(iv)

Substituting Eqs  (i), (ii) and (iii) in Eq. (iv),

     

− − −
=

− = =

5 2 2 2 0=
2

4 2− 2

3

5 1Ω 3

( )43 ( )3−3 ( )3+32− 2)44−
I3

I I=Ω5 1=Ω I3

A

A

EXAMPLES WITH DEPENDENT SOURCES 

  Example 2.38  Obtain the branch currents in the network shown in Fig. 2.63.

5 Ω 5 Ω

10 Ω

10 V5 V

+  −

+
−

10IB

5IA

IA IB

Fig. 2.63

Solution Assigning clockwise currents in two meshes as shown in Fig. 2.64,

From Fig. 2.64, 

…(i)I IA 1

I IB 2  
…(ii)

Applying KVL to Mesh 1,

5 5 10 10 5 0

5 5 10 10 10 5 0

1 10

1 20 1 20 1

5 5

5 −10 − 5

I I101 101

I I101 101 I I101 10+1

A5− 5101010( )I I1 2I I1 −1

− = −

= =

20 5

1

4
0

1

1

I1

I1 . A25 …(iii)

Applying KVL to Mesh 2,

5 10 5 10 0

5 10 10 5 10

15 1 10

2

1 210 1 25

1 215

10 I5

10 I55

I I151 15

A 10 −2I5 =
01010 =2I55

=2I1515

( )2 1

…(iv)

5 Ω 5 Ω

10 Ω

10 V5 V

+  −

+
−

10IB

5IA

IA IB

I1 I2

Fig. 2.64
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Putting I1 = 0.25 A in Eq. (iv),

 

15 25 15 10

0 416

2

2

( .0 )

.

15

= −I A

 Example 2.39  Find the mesh currents in the network shown in Fig. 2.65.

5 Ω

2 Ω4 Ω

1 Ω

10 V

5 V −
+ 2V1

2V2

+  −

+
V1

−

+ V2 −

Fig. 2.65

Solution Assigning clockwise currents in the 

two meshes as shown in Fig. 2.66,

From Fig. 2.66, …(i)

         

V I1 1V IV 5

V I2 2V IV 2
  …(ii)

Applying KVL to Mesh 1,

 

− =
− − −

5 5− 2 4− 1 2 0

5 5− 2 4 2+ 5

1 2 1 1

1 1 1 2

I 21 2− 2 I 11 −1 V2+ 12+
I 21 − 2 − +− I

( )−1 22

( )2 2I22 ( 11

1 2

0

20 3 52

) =

2I1 3+ 3 …(iii)

Applying KVL to Mesh 2,

                 

−
− +

2 1 2 1− 0 0=
2 2 1= 0

11 3 1= 0

1 2

2 1 2

1 23

V 11 1− 2− 2

I− I 21 − 2

I 31 − 3

( )−2 1I I1

( )5− 1I1

 
…(iv)

Solving Eqs  (iii) and (iv),

                       

I

I

1

2

0 161

2 742

=
= −

.

.

A

A

 Example 2.40  Find currents Ix and Iy of the network shown in the Fig. 2.67.

5 Ω

2 Ω4 Ω

1 Ω
10 V

5 V
− 
+++

2Iy

2Ix

+ −+
Iy

Ix

Fig. 2.67

5 Ω

2 Ω4 Ω

1 Ω
10 V

5 V −
+++ 2V1

2V2

+ −+

+
V1

−

+ V2 −

I1 I2

Fig. 2.66
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Solution Assigning clockwise currents in the two Meshes as shown in Fig. 2.68.

From Fig. 2.68,

I Iy 1

I I Ix I1 2I−

Applying KVL to Mesh 1,

− =

− +

5 5− 2 4 1 2 0

5 5− 2 4 2

1 4−

1 14− 1 2 1

I 21 − 2 I −11 I2+

I 21 − 2 I I I− +1 1 + I1

x y14 11 2+( )−1 2

( )−1 2 == 0

  − =
−

5 5− 2 2 4 2+ 0

10 3 5=
1 1 2 1− 4 1 2 1

1 23

I I I2 2+1 1− − ++ I1

I + 31 + 3 …(iii)

Applying KVL to Mesh 2,

    

−

− =
−

2 1 2 1− 0 0=

2 2+ 10

3 1= 0

2

1 2 1 2

1 23

1− I− 2

− I2−1 2−
I 31 − 3

y ( )2 1−I I1

 ...(iv)

Solving Eqs  (iii) and (iv),

   

I

I

1

2

15

11
1 364

2 878

= − = −

= −

.

.

A

A

  

I

I I I

y

x

= −

I = − + =

1 364

1 364 2 878 1 5141 2I−

.

. .+364 .

A

A

 Example 2.41  Find the currents in the three meshes of the network shown in Fig. 2.69.

1 Ω

1 Ω

1 Ω 1 Ω

1 Ω 1 A5 V

+ −

+
− Iy

Iy

Ix Ix

Fig. 2.69

Solution Assigning clockwise currents in the three meshes is shown in Fig. 2.70.

1 Ω

1 Ω

1 Ω 1 Ω

1 Ω 1 A5 V

+ −

+
− Iy

Iy

Ix Ix

I1 I2 I3

Fig. 2.70

5 Ω

2 Ω4 Ω

1 Ω
10 V

5 V
− 
+++ 2Iy

2Ix

+  −+  
Iy

Ix

I1 I2

Fig. 2.68
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From Fig. 2.70,

                                                                                      Ix = I1 ...(i)

                                                                                              I I Iy −I2 3I−  …(ii)

Applying KVL to Mesh 1,

           

5 1 1 0

5 0

2 5

1 11 2

1 2 3 1 2

1 3

1 − 11

−2

I I1 −1 y ( )1 2

( )2 3 ( )1 2

 
…(iii)

Applying KVL to Mesh 2,

−

− + − −

1 1+ 1 0=2 − 1

2 1 2

( )2 1 ( )−2 3

( )2 1 ( )2 3 (

− I1− I 1−1

2 1− −2 3− I I2 1− I I−2

y x2I I1

33

2

0

2 02

) =

2−2 …(iv)

For Mesh 3,

                      I3 1= −  
…(v)

Solving Eqs  (iii), (iv) and (v),

                     

I

I

I

1

2

3

2

0

1

=
=

= −

A

A

 Example 2.42  For the network shown in Fig. 2.71, fi nd the power supplied by the dependent  voltage 

source.

50 Ω

20 Ω 30 Ω

5 A
+
V1

−
0.4 V1 0.01 V1

+
−

Fig. 2.71

Solution Assigning clockwise currents in three Meshes as shown in Fig. 2.72.

50 Ω

20 Ω 30 Ω

5 A
+
V1

−
0.4 V1 0.01 V1

+
−I1 I2

I3

Fig. 2.72
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From Fig. 2.72,

  

V V

V I I

V I I

1VV 1VV

1 1V IV 3

1 1V IV 3

20 0 4 0

0 6 20 20

33 33 33 33

=V1VV

−I1II

−I1II

( )I I1II 3−1II

.1I 33 …(i)

For Mesh 1,

            I1 5=  
…(ii)

For Mesh 2,

   

I I

I

2 1VV 1

1 2 3

0 01 0V1VV 01 33 33

0 33 0I I 33 0I2I =
.VV 01VV ( .33 . )I3I33

. .33 0I1 22I  
…(iii)

Applying KVL to Mesh 3,

− =
− + =

50 30 20 0

20 30 100 0

3 30 20

1 230 3

I 303 − 30 20− 20

I I301 − 30 I

( )−3 2I3 I2 ( )−3 1I3 I1

 …(iv)

Solving Eqs  (ii), (iii) and (iv),

I

I

I

1

2

3

5

1 47

0 56

=
= −
=

A

A

A

.

  
V I I1 1V IV 333 33 33 33 33 5 33 56−I1II 5= 33.1I 33 . (33(3333 ) .33 ( .0 ) 148= V

   Power supplied by the dependent voltage source = 0.4 V1 (I1 − I2)   = 0.4 (148) (5 + 1.47)   = 383.02 W

 Example 2.43  Find the voltage Vx in the network shown in Fig. 2.73.

16.67 Ω 33.33 Ω

25 Ω
30 V

0.45 A

10 V

+ Vx −

2 Vx

− 
+

`

Fig. 2.73

Solution Assigning clockwise currents in the three meshes as shown in Fig. 2.74.

16.67 Ω 33.33 Ω

25 Ω

30 V

0.45 A

10 V

+ Vx −

2 Vx

− 
+

I1

I3

I2

Fig. 2.74



2.32 Network Analysis and Synthesis

From Fig. 2.74,

  
V IxVV 16 67 1  …(i)

Applying KVL to Mesh 1,

          

− − − =
− −

30 16 67 33 33 2 10 0

30 16 67 33 33

1 33 5

1 133

.67 1 33 ( )−1 3 ( )−1 2

.67 1 33

I 33 331 − 33 331 33 ( 1 25− 25)3 ( 1

I I33 331 1− 33 331 33 +++ + − =
− + =

33 33 25 25 10 0

75 25 33 33 40

3 15 2

1 225 3

.

.

I I− 253 1− 25 I

I I+ 251 + 25 I
 

…(ii)

Applying KVL to Mesh 2,

                  

10 25 2 0

10 25 2 67 01

− 25 + 2

− 25 + 2 67

( )2 1

( )2 1 ( .1616 )

2 12 V

2 12

xV

   

10 25 2 33 34 0

58 34 25 10

2 15 1

1 25

− 25 + =33 34 1

=2 −
I I252 125+2 I1

I I251 252525

.

.  
…(iii)

For Mesh 3,

   I3 0 45=  …(iv)

Solving Eqs  (ii), (iii) and (iv),

                   

I

I

I

1

2

3

0 9

1 7

0 45

= −
= −
=

A

A

A

                   
V IxVV =I16 67 16 67 911 .16I1 ( .−0 ) V= −15

 
…(v)

 Example 2.44  For the network shown in Fig. 2.75, fi nd the mesh currents I1, I2 and I3.

2 Ω 1 Ω

1 Ω 2 Ω

3 Ω
+

−

15 A

0.111 Vx

VxI1 I2

I3

Fig. 2.75

Solution From Fig. 2.75,

       
VxVV 3( )I II1 2I−

 
…(i)

Writing current equation for the two current sources,

            I3 15=  
…(ii)

and

                  

0 111

0 3

1 3

1 3

.

. [111 ( )1 2

V I1 I3

1 I I1 3

xVV 1I1

=)2

0 333 0 333 0

0 667 0 333 0

1 2333 1 3

1 2333 3

.333 1 0

.667 1 0

I I0 3331 0 3331 0 I I1

I I0 3331 0 3331 0 I

−20 333 =3I3

−0 667 I1 + =3I3 …(iii)
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Applying KVL to Mesh 2,

  

− −
− − =

3 1− 2 0=
3 6 0

2

1 26 3

( )2 1 ( )2 3− 2 3−
I6+ 6+ I3  

…(iv)

Solving Eqs  (ii), (iii) and (iv),

  

I

I

I

1

2

3

17

11

15

=
=
=

A

A

A

 Example 2.45  For the network shown in Fig. 2.76, fi nd the magnitude of V0 and the current  supplied 

by it, given that power loss in RL = 2 W resistor is 18 W.

V0

5 Ω 10 Ω 5 Ω

2 Ω 2 Ω RL = 2 Ω4 Ω

+ Vx −

2Vx

Fig. 2.76

Solution Assigning clockwise currents in meshes is shown in Fig. 2.77.

V0

5 Ω 10 Ω 5 Ω

2 Ω 2 Ω RL = 2 Ω4 Ω

+ Vx −

2Vx

I1 I2 I3 I4

Fig. 2.77

From Fig. 2.77,

V Ix 1 …(i)

Also,

I R

I

I

LR4
2

4
2

4

18

18

3

=

=
( )2

A …(ii)

Applying KVL to Mesh 1,

V

I V

0 1V IV

1 2I 0VV

5 2I1I 0

7 2I1

1II =
=I2I

( )I I1 2I II2I

…(iii)

Applying KVL to Mesh 2,

         

− =
− =

2 4− 0

2 6 0

2

1 26

( )2 1− I

I6+ 6+  …(iv)

For Mesh 3,

        

I I

I I

3I VxV 1

1 3I I

2 2VVxVV 10

10 0

VV

=I3I

( )15 I1II

 …(v)
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Applying KVL to Mesh 4,

   

−
− =

2 5− 2 0=
2 9 0

4 42

3 49

( )4 3− I 24 − 2

I9+ 9+

              

−
=

2 9+ 0=
13

3

3I3

( )3

. A5

From Eq. (v),

                      
I

I
1

3

10

13 5

10
1= = =

.
. A35

From Eq. (iv),

               

− +
=

2 35 6 0=
0 45

2

2

( .1 )

I A

From Eq. (iii),

             

7 35 0

8 55

0

0

( .1 ) (2 . )45)45 =02 )45

=
V0

V0 V

Current supplied by voltage source V0 = I1 = 1.35 A

 Example 2.46  In the network shown in Fig. 2.78, fi nd voltage V2 such that Vx = 0. 

2 3A A

24 V

10 Ω

Vx

+

+++

−

−

20 Ω

5 Ω

0 1 Vx

V2

Fig. 2.78

Solution Assigning clockwise currents in four meshes as shown in Fig. 2.79.

From Fig. 2.79,
VxVV 20 ( )I II3 4I− …(i)

Writing current equations for Meshes 1 and 2,

…(ii)I

I

1

2

2

3

=
= …(iii)

Applying KVL to Mesh 3,

24 10 20 0

24 10 20 0

30 20

0

3 40

−10 − 20 =
−10

−30 =

( )3 1 ( )3 4

( )3( )2 ( )3 4

3 13 33

20202023 23

I I203 20+3 −−44 …(iv)

Applying KVL to Mesh 4,

− −
− − =

= −

20 5 0+ =
20 5 0

20 25

2

2

3 425

( )4 3 ( )4 2

( )4 3 ( )34

4 3− − V2

4 3− V+ 2+)34 3−
I I253 − 25 VV2VV 15− …(v)

But

       

V

I I

xVV =
=

0

20 0

3 4I I

( )I II3 4I II

2 A 3 A

24 V

10 Ω

Vx

+

++

−

−

20 Ω

I1

I3 I4

I2

5 Ω

0.1 Vx

V2

Fig. 2.79
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From Eq. (iv),

                

= −
=
=

30 20 44

4 4

4 4

3 320

3

4

I I+ 203 3+ 20

I3

I

.

.

A

A

From Eq. (v),

                

20 4 4 15

7

2

2

( .4 ) (25 . )4)4 =4(25 )4 −2−
=

V2V22

V2 V

2.4    SUPERMESH ANALYSIS

Meshes that share a current source with other meshes, none of which contains a current source in the outer 

loop, form a supermesh. A path around a supermesh doesn’t pass through a current source. A path around each 

mesh contained within a supermesh passes through a current source. The total number of equations required 

for a supermesh is equal to the number of meshes contained in the supermesh. A supermesh requires one 

mesh current equation, that is, a KVL equation. The remaining mesh current equations are KCL equations.

 Example 2.47  Find the current through the 10 W resistor of the network shown in Fig. 2.80.

5 Ω

1 Ω 10 Ω
15 Ω4 A

2 V I1 I2 I3

Fig. 2.80

Solution Applying KVL to Mesh 1,

2 1 10 0

11 10 2

1 10

1 210

1 =
=2

I 101 101

I I101 101010

( )1 2− 2I1 I

…(i)

Since meshes 2 and 3 contain a current source of 4 A, these two meshes will form a supermesh. A 

supermesh is formed by two adjacent meshes that have a common current source. The direction of the current 

source of 4 A and current (I3 − I2) are same, i.e., in the upward direction.

Writing current equation to the supermesh,1

             3 2I I 4=I2I  …(ii)

Applying KVL to the outer path of the supermesh,

  

− −
− =

10 5 15 0=
10 1 15 0

2 315

1 25 3

( )2 12 1− 151− 5

I I151 −15 I3  
…(iii)

Solving Eqs  (i), (ii) and (iii),

                       

I

I

I

1

2

3

2 35

2 78

1 22

= −
= −
= .

A

A

A
 …(iv)

Current through the 10 Ω resistor = I1 − I2 = −(2.35) − (−2.78) = 0.43 A
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 Example 2.48  Find the current in the 3 W resistor of the network shown in Fig. 2.81.

7 V
1 Ω

2 Ω

2 Ω

1 Ω

3 Ω7 AI1

I2

I3

Fig. 2.81

Solution Meshes 1 and 3 will form a supermesh.

Writing current equation for the supermesh,

                                 I I1 3I I 7=I3I  …(i)

Applying KVL to the outer path of the supermesh,

                       

7 1 3 1 0

4 4 7

3

1 2 3

1 − =1 3

− − =4 3 −
( )1 2 ( )3 211 I33

I 41 + 44 I3  …(ii)

Applying KVL to Mesh 2,

                           

−
=

1 2− 3 0=
6 3+ 0

2 3

1 26 3

( )2 1 ( )−2 3− I 32 − 3

I 61 − I  …(iii)

Solving Eqs  (i), (ii) and (iii),

                                 

I

I

I

1

2

3

9

2 5

2

=
=
=

A

A

A

Current through the 3 Ω resistor = I2− I3 = 2.5 − 2 = 0.5 A

 Example 2.49  Find the current in the 5 W resistor of the network shown in Fig. 2.82.

50 V

10 Ω

5 Ω

2 Ω

1 Ω

3 Ω
2 AI1

I2

I3

Fig. 2.82
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Solution Applying KVL to Mesh 1,

      

50 10 5 0

15 10 5 501 210 3

−10 − 5

−2

( )1 2 ( )1 311

I I101 1010  
…(i)

Meshes 2 and 3 will form a supermesh as these two meshes share a common current source of 2 A.

Writing current equation for the supermesh,

                   
I I2 3I 2=I3I

  
…(ii)

Applying KVL to the outer path of the supermesh,

− − −
− +

10 2 1 5 0=
15 12 6 0=

2 3

1 2 3

( )2 1 ( )3 12 1− I12 31− −
I I+121 +12  

…(iii)

Solving Eqs  (i), (ii) and (iii),

                                                                                                           
I1 20= A

                                                                                              

I

I

2

3

17 33

15 33

=
=

A

A

.

.

Current through the 5 Ω resistor = I1 − I3 = 20 − 15.33 = 4.67 A

 Example 2.50  Determine the power delivered by the voltage source and the current in the 10 W

resistor of the network shown in Fig. 2.83.

50 V

1 Ω

5 Ω

10 Ω

5 Ω

3 A

10 A

I1

I2

I3

Fig. 2.83

Solution Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

   I I1 2I I 3=I2I  …(i)

Applying KVL to the outer path of the supermesh,

          

50 5 5 10 1 0

6 15 11 50

1 25

1 25 3

− 5 −10 −1

−6 11

I55

1515

( )2 3I I2 32 ( )1 3

…(ii)

For Mesh 3,

I3 10= …(iii)

Solving Eqs  (i), (ii) and (iii),

I

I

I

1

2

3

9 76

6 76

10

=
=
=

A

A

A

Power delivered by the voltage source = 50 I1 = 50 × 9.76 = 488 W

I I I10 3 2I 10 6 76 3 24Ω I3 = −10 . .76 3 A



2.38 Network Analysis and Synthesis

 Example 2.51  For the network shown in Fig. 2.84, fi nd current through the 8 W resistor.

6 Ω

4 Ω 8 Ω
2 Ω 11 Ω

3 A 12 A
10 V

7 A5 VV

I2

I3

I4

I1

Fig. 2.84

Writing current equations for Meshes 1 and 4, 
...(i)

   

I

I

1

4

3

12

= −
= −  ...(ii)

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

  I I3 2I I 7=I2I  
…(iii)

Applying KVL to the outer path of the supermesh,

5 4 6 8 10 0

5 4 6 8 10 0

10

2 8

26

4 − 6 + =
4 −2

−

( )2 1 ( )3 44−
( )32 3 ( )123 12

2 12 88( 3

I66632 3+2

III2 38 9I3I 3I3I …(iv)

Solving Eqs  (iii) and (iv),

  

I

I

2

3

8 28

1 28

= −
= − .

A

A

  
I I I8 3I I 4 1 28 12 10 72−I3I = − 12. .28 1 1012 A

EXAMPLES WITH DEPENDENT SOURCESEXAMPLES WITH DEPENDENT SOURCES

 Example 2.52  In the network of Fig. 2.85, fi nd currents I1 and I2.

8 Ω

10 Ω
2 Ω

3V0

+ −

−3 A

−10 V

V0

I1 I2

Fig. 2.85

Solution From Fig. 2.85,

  

− −10 8 0=
10 8

1 0

0 1

1 0−
V = 10 I80 1= − −10 8  …(i)

Meshes 1 and 2 will form a supermesh.

Writing current equations for the supermesh,

  I I2 1I 3=I1II −  …(ii)
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Applying KVL to the outer path of the supermesh,

       

− =
− −

= −

10 8 3 10 0

10 8 3 1− 0 0=
16 10 20

1 0 2

1 3 2

1 210

I V31 03− I

33−
I I101 −10

( )10 8 110 810 8−−10 8

 
…(iii)

Solving Eqs  (ii) and (iii),

     

I

I

1

2

8 33

11 33

= −
= − .

A

A

 Example 2.53  In the network of Fig. 2.86, fi nd the current through the 3 W resistor.

3 Ω

2 Ω 5 Vx

1 Ω
+
−

+

− 2 A

−4 V

Vx

Fig. 2.86

Solution Assigning clockwise currents in two meshes as shown in Fig. 2.87.

From Fig. 2.87,

  
V IxVV 2 1 

…(i)

Meshes 1 and 2 will form a supermesh.

Writing current equations for the supermesh,

  I I2 1I 2=I1II  
…(ii)

Applying KVL to the outer path of the supermesh,

   

− =
−

=

2 4 3 5− 0

2 4 3 5− 0=
8 3 4

1 23

1 23

1 23

4 31 −4− 3 V

4 31 −4− 3

I33−

xVV

( )−2 1

 
…(iii)

Solving Eqs  (ii) and (iii),

   

I

I

1

2

2

4

=
=

A

A

   I I3 2I I 4=I2I A

 Example 2.54  Find the currents I1 and I2 at the network shown in Fig. 2.88.

110 V 0.5 V1V1

I1 I2

I3

14 Ω 4 Ω

10 Ω

+

−
2 Ω 6 Ω

Fig. 2.88

3 Ω

2 Ω 5 Vx

1 Ω
+
−

+

− 2 A

−4 V

Vx

I1 I2

Fig. 2.87
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Solution From Fig. 2.88,

          V1 = 2 (I1 − I2)

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

 I I I I3 2I I 1 1II 20 5 0 5 2=I2I ×= 0 5 =. 15 ( )I I1II 2I2V11

 I I3 1I II

Applying KVL to outer path of the supermesh,

 

− =
− −
2 1− 0 6 0

2 2 10 6 0=
3 26

2 1 1 26

1 2

( )2 1− I66−
I2+2 12+ I 61 − 6

I I=1 = −

Applying KVL to Mesh 1,

 

110 14 4 2 0

110 20 2 0

1 1

1 22

−14 2 =
− 20

4444

I 21 2+1

( )1 2I I11

              

110 20 2 0

5

5

1 22

2

1 2

+ 20

= −
=

I 21 2+1

I

I I1 =
A

A

 Example 2.55  For the network of Fig. 2.89, fi nd current through the 8 W resistor.

50 V
52 V

0.5 Ix

5 Iy

+ −
Iy

Ix

8 Ω

10 Ω 6 Ω

Fig. 2.89

Solution Assigning clockwise currents to the three meshes as shown in Fig. 2.90.

From Fig. 2.90, 

…(i)

 

I I

I I I

x

y −I

1

2 3I−
 

…(ii)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

 

I I I

I I

x2 1I

1 2I

0 5 50 5

0 5 0

=I1II

I−0 5 =
. .I x5 0 ( )I1

 
…(iii)

Applying KVL to the outer path of the supermesh,

 

50 10 6 8 52 0

10 14 16 2

2

1 2 3

−10 − 6 −28 =
−10 =3+16

( )1 3 ( )2 31 31 I

I I141 141 I3  …(iv)

50 V
52 V0.5 Ix

5 Iy
+ −

Iy

Ix
I1 I2

I3

8 Ω

10 Ω 6 Ω

Fig. 2.90
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Applying KVL to Mesh 3,

  

=

− − =

5 6 10 0

5 6− 10 0

10

6− −10

I

y ( )3 2−I3 I2 ( )−3 1−I3 I1

( )2 3− ( )3 2I I3 − ( )3 1I I3 1−

1 211 311 0+ =I I311−2  
…(v)

Solving Eqs  (iii), (iv) and (v),

  

I

I

I

1

2

3

1 56

0 58

1 11

= −
= −
= − .

A

A

A

  
I I8 2I I 0=I2I − . A58

 Example 2.56  For the network shown in Fig. 2.91, fi nd the current through the 10 W resistor.

15 V
40 V

20 V10 Ω 5 Ω 4 Ω

2 I12 A

I1 I2 I3

Fig. 2.91

Solution Meshes 1, 2 and 3 will form a supermesh.

Writing current equations for the supermesh, 

…(i)          
I I1 2I 2=I2I  

…(ii)

and       

I I I3 2I I 1

1 2 3

2

2 0I I I1 2 3

=I2I

I I2I 3  

Applying KVL to the outer path of the supermesh,

15 10 20 5 4 40 0

10 5 4 35

1 20 5 3

1 25 3

−10 + =40

=
I 20 51 20 51 5 I3

I 51 + 55 I3 …(iii)

Solving Eqs  (i), (ii) and (iii),

                       

I

I

I

1

2

3

1 96

0 04

3 89

=
= −
=

A   

A

A

                  
I I10 1 1Ω =I1 . A96

 Example 2.57  In the network shown in Fig. 2.92, fi nd the power delivered by the 4 V source and 

voltage across the 2 W resistor.
2 Ω

5 Ω

5 A

4 V

V2

I2

I1

I3

+ −V2

6 Ω

4 Ω

1 Ω V2

2

Fig. 2.92
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Solution From Fig. 2.92,

  
V I2 1V IV I2

 
…(i)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh,

I I2 1I 5=I1I …(ii)

Applying KVL to the outer path of the supermesh,

4 5 2 6 4 1 0

12 6 5 4

2 12 1

1 26 3

5 6 =
−12 =35 −

I 22 22 I 41 41 11

I 61 61 I3

( )1 3 ( )2 33−I I3I3

…(iii)

For Mesh 3,

   
I

V I
I3

2 1V IV I
1

2

2

2
= = =

  I I1 3I I 0=I3I  …(iv)

Solving Eqs  (ii), (iii) and (iv),

         

I

I

I

1

2

3

2

3

2

= −
=
= −

A

A

A

Power delivered by the 4 V source = 4 I2 = 4 (3) = 12 W

              
V2 1V IV 2 2I1I 4I1II ( )2−2 V

 Example 2.58  Find currents I1, I2, I3, I4 of the network shown in Fig. 2.93.

1
10

Ω

6 V 40 A

5 Vx

+

−
Vx

I1

I2 I3

I4

1
20

Ω 1
15

Ω

1
2

Ω1
5

Ω

1
6

Ω

Fig. 2.93

From Fig. 2.93,

                                              
VxVV

1

5
( )I I−I2 1II−

 
…(i)

For Mesh 4,

                                               I4 40=  …(ii)

Applying KVL to Mesh 1,

                                  

− − =

− − − +

6
1

10

1

5

1

6
0

6
1

10

1

5

1

5

1

6

1

6
4

1 1
5

2 1
6

4

1 1
5

2 1−
6

I −
1

1 − −
1

−

I I I− +
1 1

1 1− I

( )−1 2I I2 ( )−1 4I I

( 0 000

7

15

1

5

2

3
1 2

5

)

− = −I I
1

1 +1
 

…(iii)
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Mesh 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

           

V I IxV3 2I I 2 1II5VVV
1

5
=I2I

⎡
⎣⎣⎣

⎤
⎦⎦⎦

−I2( )I I2 1II−I2

  I1 2 32 0I I2 3I2I  
…(iv)

Applying KVL to the outer path of the supermesh,

        

− − − =

− − −

1

5

1

20

1

15

1

2
0

1

5

1

5

1

20

1

15

1

2 3
15

2 1
5

2 3
15

( )2 1 ( )3 42 1− I I
1

2 3− 3 −

I I+
1

2 1+ I I
1

2 3−
22

1

2
0

1

5

1

4

17

30
20

3

1 2
4

2 3

I3

I I
1

1 I3

+ =

−2 = −

( )4040

 

…(v)

Solving Eqs  (iii), (iv) and (v),

    

I

I

1

2

10

20

=
=

A

A

    

I

I

3

4

30

40

=
=

A

A

 2.5    NODE ANALYSIS

Node analysis is based on Kirchhoff’s current law which states that the algebraic sum of currents meeting 

at a point is zero. Every junction where two or more branches meet is regarded as a node. One of the nodes 

in the network is taken as reference node or datum node. If there are n nodes in any network, the number of 

simultaneous equations to be solved will be (n − 1).

Steps to be followed in Node Analysis

Assuming that a network has 1. n nodes, assign a reference node and the reference directions, and 

assign a current and a voltage name for each branch and node respectively.

Apply KCL at each node except for the reference node and apply Ohm’s law to the branch currents.2. 

Solve the simultaneous equations for the unknown node voltages.3. 

Using these voltages, fi nd any branch currents required.4. 

 Example 2.59  Calculate the current through 2 W resistor for the network shown in Fig. 2.94.

0.5 Ω

1 Ω

VA VB

20 V 20 V

1 Ω1 Ω
2 Ω

Fig. 2.94

Solution Assume that the currents are moving away from the nodes.
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Applying KCL at Node A,

  

V V V V

V V

V V

A AV V A BV VV

A BV VV

A BV VV

+ +A =

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=VBVV

=VBVV

20

1 1 0 5
0

1

1

1

1

1

0 5

1

0 5

20

1

4 2VV

. .⎠5 0

2022  …(i)

Applying KCL at Node B,

V V V V

V V

V

B AV VV B BV VV V

A BV VV

AV

+ +B −
=

− VV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

−

0 5 2

20

1
0

1

0 5

1

0 5

1

2

1

1

20

1

2 3VAV +VAV 5

. .⎝5 0

. VVBVV = 20 …(ii)

Solving Eqs  (i) and (ii),

                                                           

V

V

AV

BVV

=
=

11

12

V

V

Current through the resisto A2
2

12

2
6Ω =resistor

VBVV

 Example 2.60  Find the voltage at nodes 1 and 2 for the network shown in Fig. 2.95.

1 Ω

1

2 ΩV1 V2

2 Ω 1 Ω 2 A1 A

2

Fig. 2.95

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

1
2 2

1

2

1

2

1

2
1

0 5 1

1 1 2

1 2
2

1 2

= +1 −

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2

=2

V V1 1 V2

V V
1

1 22

V V0 51 20 50 5 20 5 …(i)

Applying KCL at Node 2,

  

2
1 2

1

2
1

1

2
2

0 5 1 4

2 2 1

2
2

1

1 2

= +2 −

− ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

−0 5 =

V V2 2 V1

V V1
1

211 +1 +⎛⎛⎛ ⎞⎞⎞

V V1 51 21 5+1.55V1 11  
…(ii)
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Solving Eqs  (i) and (ii),

V

V

1VV

2VV

2

2

=
=

V

V

 Example 2.61  Find the current in the 100 W resistor for the network shown in Fig. 2.96.

20 Ω 30 Ω

1 A

V1 V2

50 Ω

40 V

60 V 100 Ω

Fig. 2.96

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

     

V V V

V V

V

1 1V VV V 2VV

1 2V VV

1VV

60

20 30
1

1

20

1

30

1

30

60

20
1

0 083 0 033

+
−

=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=V2VV +

−. .V1VV083 0 VV2VV 4=  
…(i)

Applying KCL at Node 2,

V V V V

V V

2 1V VV V 2 2VV

1 2V VV V

30

40

50 100
0

1

30

1

30

1

50

1

100

40

50

0

+
−

+ =2

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

− .003300 0 063 0 81 2V V0 0631 20 =2V0 063 20 063 .022063 22063 …(ii)

Solving Eqs  (i) and (ii),

V

V

1VV

2VV

67 25

48

=
=

. V25

V

Current through the 100 resistor AΩ =resistor = =
V2VV

100

48

100
0 48

 Example 2.62  Find VA and VB for the network shown in Fig. 2.97.

1 Ω 2 Ω

2 Ω
2 Ω

VBVA

1 V

2 V2 A 12 Ω A

Fig. 2.97
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Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node A,

        

2
2

1

2 1

1

2

1

2
1 2

1

2

2 2 5

= +
−

+

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

+

V V V V

V

V

A A+
V V A BV VV−

A BV VV

A BV VV . …(i)

Applying KCL at Node B,

            
V V V

V V

V V

B AV VV BVV

A BV VV

A BV VV

+
−

=

−VV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= +

−VV =

1

2

2
1

1
1

2
1

2

2

1 2

 
…(ii)

Solving Eqs  (i) and (ii),

               

V

V

AV

B

=
=

2 875

3 25

. V

V

 Example 2.63  Find currents I1, I2 and I3 for the network shown in Fig. 2.98.

5 Ω
2 Ω 4 Ω

10 Ω 2 Ω

50 V

25 V
I1

V1 V2

I2 I3

Fig. 2.98

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

    

V V V V

V V

V V

1 1V VV V 1 2V VV V

1 2V VV

1 2V VV V

2

25

5 10
0

1

2

1

5

1

10

1

10

25

5

0 8 0 1

+
−

+ =

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=V2VV

. VVV8 == 5 …(i)

Applying KCL at Node 2,

     

V V V V

V V

V

2 1V VV V 2 2V VV V

1 2V VV V

1VV

10 4 2
0

1

10

1

10

1

4

1

2

50

2

0 1

+ +2 −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= −

−

( )50−

+++ 0 85 2= − 52V2
 

…(ii)
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Solving Eqs  (i) and (ii),

V

V

1VV

2VV

2 61

29 1

=
= − .

V

V

I
V

I
V V

I
V

1
1VV

2
1 2V VV V

3
2VV

2

2 61

2
1 31

10

2 2

10
3 17

= − = − = −

= = =

=
+

. (61 . )91

A

A

5055

2

29 1 50

2
10 45=

−29 1
=

.
. A45

 Example 2.64  Find currents I1, I2 and I3 and voltages Va and Vb  for the network shown in Fig. 2.99.

0.2 Ω

120 V

30 A 20 A

110 V

I1

Va Vb

I2 I30.3 Ω

a+

−

+

−

b

0.1 Ω

Fig. 2.99

Solution Applying KCL at Node a,

I I

V V Va aV VV V bVV

1 2I I30

120

0 2
30

0 3

−
= +30

−
. .2 0

36 0 3 1 8 0 2 0 2

0 5 0 2 34 2

− 0 3 −
=

.3 .0

.5 .

V V1 8 0 2= + 0 2 V

V V0 20 2

a aV VV V1 8 0+ 0 2.1 .22 bVV

a bV VV V0 2− 0 2.0 …(i)

Applying KCL at Node b, 

         

I I

V V Va bV VV V bVV

2 3 20

0 3

110

0 1
20

=I3I

+
−

=
. .3 0

0 1 0 1 33 0 3

0 03
20

0 1 0 4 32 4

.1

.1 .

V V0 1 V

V V0 4

a bV VV V1.0 bVV

a bV VV V0 4.0

+V0 1 bVV0 10 −
=

=V0 4 bVV0 4 − …(ii)

Solving Eqs  (i) and (ii),

       

V

V

aVV

bVV

=
=

112

109

V

V

                                                           

I
V

I
V V

I

aVV

a bV VV V

1

2

3

120

0 2

120 112

0 2
40

0 3

112 109

0 3
10

11

=
−

=
−

=

= =
−

=

=

. .2 0

. .3 0

A

A

00

0 1

110 109

0 1
10

−
=

−
=

VbVV

. .1 0
A
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 Example 2.65  Calculate the current through the 5 W resistor for the network shown in Fig. 2.100.

3 Ω

4 8A A
2 Ω 4 Ω

2 Ω

20 V

V1 V2 V3
5 Ω

Fig. 2.100

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

4
2 3

0

1

2

1

3

1

3
4

0 83 0 33 4

1 1 2

1 2
3

1 2

+ +1 −
=

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2

=2 −

V V1 1 V2

V V
1

1 22

V V0 331 20 330 33 20 33.83 1 0
…(i)

Applying KCL at Node 2,

V V V V V

V V V

2 1V VV V 2VV 2 3V VV V

1 2V VV V 3VV

3 2 5
0

1

3

1

3

1

2

1

5

1

5

20

2

+
−

+ =

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3VV −

−

( )20−

0 300 3 1 03 0 2 101 2 333V V1 031 21 031 V3−2V1 03 21 031 = −
…(ii) 

Applying KCL at Node 3,

  

V V V

V V

V

3 2V VV V 3VV

2 3V VV

2 3V V

5 4
8

1

5

1

5

1

4
8

0 2 0 45 8V3VV

+ =3

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

− VVV0 2. VV2 VV2

 
…(iii)

Solving Eqs  (i), (ii) and (iii), 

  

V

V

V

1VV

2VV

3VV

8 76

9 92

13 37

= −
= −
= .

V

V

V

Current through the resisto A5
5

13 9

5
4 66

2Ω =resistor
−V V3 2 . (37 − . )92
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 Example 2.66  Find the voltage across the 5 W  resistor for the network shown in Fig. 2.101.

100 Ω 20 Ω

5 Ω

4 Ω

2 Ω

4 Ω

9 A

12 V

V1

V2
V3

Fig. 2.101

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

V V V V V

V V V

V

1 1V VV V 2 1V VV V 3VV

1 2V VV V 3VV

12

4 2 4
9 0

1

4

1

2

1

4

1

2

1

4
9

12

4

+
−

+
−

+ 9

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−2VV = − +

1 211VVVV 30 5 0 25 63V2V2 30 25 3−2 .2 0 …(i)

Applying KCL at Node 2, 

V V V V V

V V V

V

2 1V VV V 2 2V VV V 3VV

1 2V VV V 3VV

1VV

2 100 5
0

1

2

1

2

1

100

1

5

1

5
0

0 5

+ +2 −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3VV

− +++ 0 71 0 2 0=2 3.7 V 0− 22 30− 22 0 …(ii)

Applying KCL at Node 3,

V V V V V

V V V

V

3 2V VV V 3 3V VV V 1VV

1 2V VV V 3VV

1VV

5 20 4
9

1

4

1

5

1

5

1

20

1

4
9

0 2

+ +3 −
=

− VVV ++ +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

−0. 0V1VV25 −V1VV25 0 200 0 92 3.2 V2 35V V0 522 0 =3V0 5 30 50 …(iii)

Solving Eqs  (i), (ii) and (iii),

V

V

V

1VV

2VV

3VV

6 35

11 76

25 88

=
=
=

.

.

V

V

V

Voltages across the i V5 2es sto 5 88 11 76 14 123 2Ω iresistor 11 76V3 2 . .88 11 .



2.50 Network Analysis and Synthesis

 Example 2.67  Determine the current through the 5 W resistor for the network shown in Fig. 2.102.

4 Ω

4 Ω 100 Ω 20 Ω

5 Ω2 Ω

36 V

3 A

V1
V2 V3

Fig. 2.102

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

V V V V V

V V V

V

1 1V VV V 2 1V VV V 3VV

1 2V VV V 3VV

1VV

4 2

36

4
3

1

4

1

2

1

4

1

2

1

4
3

36

4

0

+
−

+
− −36

=

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−2VV = +3

− ..5 0 2 122 3V V0 252 3.0 25 =3V0 25 30 25
  

…(i) 

Applying KCL at Node 2,

V V V V V

V V V

V

2 1V VV V 2 2V VV V 3VV

1 2V VV V 3

1VV

2 100 5
0

1

2

1

2

1

100

1

5

1

5
0

0 5

+ +2 −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3

− +++ 0 71 0 2 0=2 3.7 V 0− 22 30− 22 0
…(ii)

Applying KCL at Node 3,

    

V V V V V

V V V

3 2V VV V 3 3V VV V 1VV

1 2V VV V 3VV

5 20 4
0

1

4

1

5

1

5

1

20

1

4
9

+ +3 − −
=

− VVV ++ +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −

−

( )36−

0 200 5 0 2 0 5 91 2 3.25 .V 0 21 21 0 V30 20 20
 

…(iii)

Solving Eqs  (i), (ii) and (iii),

V

V

V

1VV

2VV

3VV

13 41

7 06

8 47

=
=
= −

. V

V

V

Current through the resisto A5
5

7 8

5
3

3Ω =resistor
V V2 3 . (06 . )47
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 Example 2.68  Find the voltage drop across the 5 W resistor in the network shown in Fig. 2.103.

4 Ω

1 Ω 2 Ω

5 Ω

1 A

2 A

V1

V2 V3

Fig  2.103

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

1
5 4

0

1

5

1

4

1

5

1

4
1

0 45 0 2 0

1 2 1 3

1 2
5

3

1 2

+ + =

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−2 = −

V V1 2 V V1 3

V V
1

1 22 V3

V 0 21 20 20 2.45 1 0 .22522 13V3 = − …(i)

Applying KCL at Node 2,

V V V

V

V V

2 1V VV V 2VV

1 2V VV

1 2V VV V

5 1
2

1

5

1

5
2V2VV1

0 2 1 2 2

+ =2

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

− VVV0 2 =. VVVVVV2 …(ii)

Applying KCL at Node 3,

V V V3 3V VV V 1VV

2 4
2 0+

−
+ 2

V V

V V

1 3V VV V

1 3V VV V

1

4

1

2

1

4
2

0 25 0V 2

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= −

−0 25VVV = −. VV5VVV25VVV . 
…(iii)

Solving Eqs  (i), (ii) and (iii),

       

V

V

V

1VV

2VV

3VV

4

1

4

= −

=

= −

V

V

V

       
V V V5 2V VV 1VV 1 5−V2VV = 1 =( )44 V



2.52 Network Analysis and Synthesis

 Example 2.69  Find the power dissipated in the 6 W resistor for the network shown in Fig. 2.104.

1 Ω 2 Ω

5 Ω

3 Ω
6 Ω

20 V

5 A

V3V2

V1

Fig. 2.104

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

V V V V V

V V V

V V

1 1V VV V 2 1V VV V 3VV

1 2V VV V 3VV

1 2V VV V

20

3 1 2
0

1

3
1

1

2

1

2

20

3

1 83

+
−

+
−

=

+ +1
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−2VV =

− =−− 0 5 6 673 .63.5V3V33 …(i)

Applying KCL at Node 2,

    

V V V V

V V V

V V

2 1V VV V 2 3V VV V

1 2V VV V 3VV

1 2V VV 3

1 6
5

1
1

6

1

6
5

1 17 0V2VV 17 5

+ =

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3VV

−VVV =V30 17.V 02V
 

…(ii)

Applying KCL at Node 3,

   

V V V V V

V V V

V

3 1V VV V 3 3V VV V 2VV

1 2V VV V 3VV

1VV

2 5 6
0

1

2

1

6

1

2

1

5

1

6
0

0 5 0 1

+ +3 −
=

− VVV ++ +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

−V1VV−0 5. .V1VV5 0 7 077 8 02 3V 0 V872 30 87 =30 V87 30 87  
…(iii)

Solving Eqs  (i), (ii) and (iii),

  

V

V

V

1VV

2VV

3VV

23 82

27 4

19 04

=
=
=

.

.

.

V

V

V

I
V V

6
2 3V VV V

6

27 4 19 04

6
1Ω = = =

. .4 19
. A39

Power dissipated in the 6 Ω resistor = (1.39)2 × 6 = 11.59 W

 Example 2.70  Find the voltage V in the network shown in Fig. 2.105 which makes the current in 

the 10 W resistor zero.



2.5 Node Analysis 2.53

3 Ω 10 Ω

2 Ω 5 Ω

7 Ω

50 VV

V1 V2

Fig. 2.105

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

V V V V V

V V V

V

1 1V VV VV 1 2VV VV

1 2V VV V

1VV

3 2 10
0

1

3

1

2

1

10

1

10

1

3
0

0 93 0V1VV 1

+ +1 −
=

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−V2VV =

. .93 0V1VV V VVV2VVVV 0 33 0VV …(i)

Applying KCL at Node 2,

   

V V V V

V V

V

2 1V VV V 2 2V VV V

1 2V VV V

1VV

10 5

50

7
0

1

10

1

10

1

5

1

7

50

7

0 1 0 4

+ +2 −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

− +V1VV0 1. .V1VV 0+V1VV1 4 744 142V2 .
 

…(ii)

  

I
V V

V V

10
1 2V VV V

1 2V VV

10
0

0

Ω = =

=V2VV
 

…(iii)

Solving Eqs  (i), (ii) and (iii),

  
V = 52 82. V82

 Example 2.71  Find V1 and V2 for the network shown in Fig. 2.106.

10 Ω

50 Ω

20 Ω

50 Ω

80 V

2 A

20 V

V2
V1

Va

Vb Vc
+ −V + −

V

Fig. 2.106

Solution  Assume that the currents are moving away from the nodes.



2.54 Network Analysis and Synthesis

Applying KCL at Node a,

V V V

V V

V V

a aV VV V bVV

a bV VV V

aVV

+
−

+

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=VbVV −

80

50 10
2 0=

1

50

1

10

1

10

80

50
2

0 12 0VVV 1.12 VVV bbVVVV = −0 4
  

…(i)

Applying KCL at Node b, 

  

V V V V V

V V V

b aV VV V b bV VV V cVV

bVVaVV cVV

+ +b −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V

−

10 50 20
0

1

10

1

10

1

50

1

20

1

20
0

0....1 0 17 0 0. 5 0V V0 17 Va bV VV V.17 cVV−V0 17 bVV.0 17
 

…(ii) 

Node c is directly connected to a voltage source of 20 V. Hence, we can write voltage equation at Node c. 

   VcVV = 20  …(iii)

Solving Eqs  (i), (ii), and (iii),

                                         

V

V

aVV

bVV

=
=

3 08

7 69

V

V

V V V

V V V

a bVV VV

b cVV VV

1VV

2VV

3 08 7 69 4 61

7 69 20 12 31

VV = − =3 08 7 69 −
VbVV = 7 69

. .08 7

. .69 20 12

V

V

 Example 2.72  Find the voltage across the 100 W resistor for the network shown in Fig. 2.107.

50 Ω

20 Ω 20 Ω

20 Ω
50 Ω

50 Ω 100 Ω

12 V

0.6 A60 V

VC

VBVA

Fig. 2.107

Solution

Node A is directly connected to a voltage source of 20 V. Hence, we can write voltage equation at Node A.

VAV = 60
…(i)

Assume that the currents are moving away from the nodes.

Applying KCL at Node B,

         

V V V V V

V V V

B AV VV B CV VV V BVV

BVVAV CVV

+ + =B

− VV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =VCVV

20 20 20
0 6

1

20

1

20

1

20

1

20

1

20
0..

.

6

0 0.0 05 0 1 0 0.0 05 05 6−0 0. 5 − 0 05V V0 15 VA BV VV.0 15 CVV  
…(ii)



2.5 Node Analysis 2.55

Applying KCL at Node C,

V V V V V V

V V

C AV VV C BV VV V C CV VV V

A BV VV

+ + + =C

− VV + + + +

50 20

12

50 100
0

1

50

1

20

1

50

1

20

1

50

1

10000

12

50

0 02 0 0 0 1 0 24

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

−0 02 + =0 1

V

V 0 V05 V

CVV

A BV VV0 05 CVV.02 V 0 .0.1VCVV …(iii)

Solving Eqs  (i), (ii), and (iii),

VCVV =
Ω =

31 68

100 31 68

.

.

V

Voltages across the resistor V

EXAMPLES WITH DEPENDENT SOURCESEXAMPLES WITH DEPENDENT SOURCES

 Example 2.73  Find the voltage across the 5 W resistor in the network shown in Fig. 2.108.

5 Ω

10 Ω

20 Ω

10 Ω

2 A

50 V

I1V1

30I1
−
+

Fig. 2.108

Solution From Fig. 2.108,

I
V V

1
1 1V VV V50

20 10

50

30
=

+
=

−
…(i)

Assume that the currents are moving away from the node.

Applying KCL at Node 1,

2
5

30

10

50

30

1 1 1 1= +1 +
+

−V V1 1 I V1 1

2
5

30
50

30

10

50

30

2

1
1

1

1= +1

+
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
−V1

V1
V1

V1

= +== +
−V V V1VV 1VV 1VV

5

2 5−V1VV 0

10

50

30
…(ii)

Solving Eq. (ii),

V1VV 20=
Ω =

V

Voltage across the 5 rΩ esistor 2= 0 V
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 Example 2.74  For the network shown in Fig. 2.109, fi nd the voltage Vx.

100 Ω 50 Ω

40 Ω

0.6 A

25 Iy

Iy

0.2 Vx

Vx

+
−

Fig. 2.109

Solution From Fig. 2.109,

I
V

y
xVV

=
100

…(i)

Assume that the currents are moving away from the node.

Applying KCL at Node x,

25 0 6
100 50

0 2

40

25
100

0 6
100 50

I
V V V V0 2

V V V

y
x xV VV V x xV VV V0 2

x x
0 6

V VV V
0 6

xVV

+ =0 6 + +x

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+ =0 60 6 + ++
0 8

40

VxVV

1

4

1

100

1

50

0 8

40
0 6

0 2 0 6

3

− − −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −

= −
= −

.0.2

V

V

V

xVV

xVV

xVV V

 Example 2.75  For the network shown in Fig. 2.110, fi nd voltages V1 and V2.

20 Ω

5 Ω

20 V

2 Ω2 A

40 V

4 A

10 Ω

V1 V2

0.5 V1

+ −

Fig. 2.110

Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

2
20

20

0 5

5
1

20

1

5

0 5

5

1

5
3

0 15 0 2

1 1 1 2

1 2
5

1

= +
− 0 5

+ −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2

V V201 120 V V1 21

V V
1

1 22

V1 .0.15 VV2VV 3= …(i)
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Applying KCL at Node 2,

V V V V V

V V

2 1V VV V 1 2V VV V 2VV

1VV

0

5 2

40

10
4

0 5

5

1

5

1

5

1

2

1

10

−V1VV
+ +2 −

=

−⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠ 22VVVV

1 2

4
40

10

0 1 0 8 8

= +4

−0 1 =.1V V1 2V 0 8+111

…(ii)

Solving Eqs  (i) and (ii),

           

V

V

1VV

2VV

40

15

=

=

V

V

 Example 2.76  Determine the voltages V1 and V2 in the network of Fig. 2.111.

0.5 Ω 1 Ω

0.25 Ω

V1

V1

V2

2 V 1 Ω

Fig. 2.111

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

V V V V

V V

V V

1VV 1 1 2V VV V

1 2V VV

7 2V VV

2

0 5 0 25 1
0

1

0 5

1

0 25
1

2

0 5

7

−
+ + =

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=V2VV

=V2VV

. .5 0

. .5 0

44
…(i)

Applying KCL at Node 2,

V V V
V

V

V

2 1V VV V 2
1VV

2V

2VV

1 1
0

2 0V2VV

0

+ + =

=
…(ii)

From Eq. (i),

V1VV
4

7
= V
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 Example 2.77  In the network of Fig. 2.112, fi nd the node voltages V1, V2 and V3. 

1 Ω 1 Ω

2 Ω2 Ω2 Ω2 A

2 V

4 Vx

V1

− Vx +

V2 V3

+
−

Fig. 2.112

Solution From Fig. 2.112,

V V VxVV V2 1V VV−VV …(i)

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

       

2
2 1

1

2
1 2

1 5 2

1 1 2

1 2

1 2

= +1 −

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎠⎠

=2

V V1 1 V2

V1 2

V V1 22 …(ii)

Applying KCL at Node 2,

  

V V V V V

V V

V V V

2 1V VV V 2 2V VV V 3VV

1 2V VV 3V

1 2V VV V 3VV

1 2 1
0

1
1

2
1 0V V2VV 3VV

2 5 0

+ +2 −
=

−VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

V3VV

−VVV − =V3VV  
…(iii)

At Node 3,

V V

V

V V V

xV3VV

3VV

1 2V VV 3VV

4 2VxVV

4 2

4 4VVV 2

V

+V2VV =

( )V2V 1VVV V2VV 1VV2VV

…(iv)

Solving Eqs  (ii), (iii) and (iv),

V

V

V

1VV

2VV

3VV

1 33

4

8 67

= −

= −

= −

V

V

V
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 Example 2.78  For the network shown in Fig. 2.113, fi nd the node voltages V1 and V2.

0.5 Ω

1 Ω 0.25 Ω1 A

3 A

2 A 2 Ix

Ix

3V2

V2V1

Fig. 2.113

Solution From Fig. 2.113,  

              
I

V V
x = 1 2V VV V

0 5  
…(i)

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

  

3 1
1 0 5

3

1
1

0 5
3

0 5
2

3 5

2
1 1 2

1 2
0 5

1

V2

V V1 1 V2

V V31 23

V V51

=1 +
−

+

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

33
1⎛

⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= −

.

.0.5⎠ ⎝

22VVVV 2= −  
…(ii)

Applying KCL at Node 2,

  

3 2
0 5 0 25

2

5
0 5 0 25

2
0 5

2 1 2

2 1 2 1
2

2

=2 + +2

= + +2 −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

V V2 1 V2
I

V V2 1 V V2 1
2

⎛ V2

x
. .5 0

. .5 0

− +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

=

1

0 5

2

0 5

1

0 5

1

0 25

2

0 5
5

2 2 5

1 2⎝⎝⎝ ⎠⎠⎠0 5 0 25 0 5

1 2

. .5 0 . .5 0
V V+ +⎛⎛⎛ ⎞⎞⎞1 1 2

1 2++ −
⎝⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

V V2+1 22+ …(iii)

Solving Eqs  (ii) and (iii),

V

V

1VV

2VV

1 31

1 19

=
= .

V

V
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 Example 2.79  Find voltages V1 and V2 in the network shown in Fig. 2.114.

1 Ω 1 Ω

2 Ω

5 A 2I1

V1

V1

V2
I1

Fig. 2.114

Solution From Fig. 2.114,

              
I

V V
1

1 2V VV V

2
= …(i)

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

       

5
1 2

1
1

2
1

1

2
5

2 5 0 5 5

1 1 2
1

1 2
2

= +1 −
+

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2

=2

V V1 1 V2
V1

V V
1

1 22

V V0 51 0 5 20 5
…(ii)

Applying KCL at Node 2,

                 

V V V
I V

V V V
V V

V

2 1V VV V 2VV
1 1I VI V

2 1V VV V 2VV
1 2V VV V

1VV

1 1
2

2
2

+ =2

+V1VV = ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

+
 

                 

3 31 2

1 2

V V31 23

V V1 2  …(iii)

Solving Eqs  (ii) and (iii),

                     

V

V

1VV

2

2 5

2 5

=
=

V

V

  Example 2.80  Find the power supplied by the 10 V source in the network shown in Fig. 2.115.

2 Ω

4 Ω

2 Ω

V1

4V3

V2

V3

10 A

10 V

1 Ω

+ −V3

Fig. 2.115
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Solution Assume that the currents are moving away from the nodes.

From Fig. 2.115,

V V V3 1V VV V 2VV10+V1VV − …(i)

Applying KCL at Node 1,

10
2

10

4 2
0

1

2

1

4

1

2

1

4

1

2
1

1 1 2 1 2

1 2
4 2

+ +1 + −10
+

−
=

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= −

V V1 1 V V2 1 V2

V2

1 1
V1 +⎛⎛⎛ ⎞⎞⎞

00
10

4

1 25 0 12 5

−

=2 −V0 750 75 20 75
…(ii)

Applying KCL at Node 2,

       

V V V V V
V

V V V V V

2 1V VV V 2 1V VV V 2VV
3VV

2 1V VV V 2 1V VV V 2VV

10

4 2 1
4

10

4 2 1
4

+ + =2

+ + =2
( )V V1 2V VV V1VVV 0

− − −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= +

− =

1

4

1

2
4

1

4

1

2
1 4

10

4
40

4 75 5 42

1 2⎝⎝⎝ ⎠⎠⎠4 2

1 2

V + + +⎛⎛⎛
V

⎞⎞⎞1 1
1 4+1 2++ +

⎝⎝⎝
⎞
⎠⎟
⎞⎞
⎠⎠

1 4+

V V5+ 751 25+ 75.75 1 5+ ..5 …(iii)

Solving Eqs  (ii) and (iii),

V

V

I
V V

1VV

2VV

10
1 2V VV V

11 03

1 72

10

4

11 1

4
0 173

= −
= −

= =
−11 −

=

.

. (03 10+03 − . )72
.

V

V

V AA

Power supplied by the 10 V source = 10 × 0.173 = 1.73 W

  Example 2.81  For the network shown in Fig. 2.116, fi nd voltages V1 and V2.

20 Ω 40 Ω

40 Ω100 Ω0.4 A 80 Iy

Iy
Vx

0.03 Vx

V1
V2 V3

+
−

+ −V

Fig. 2.116

Solution From Fig. 2.116, 

…(i)
V V V

I
V

xVV

y

V

=

1 2VV VV−VV

2VV

40  
…(ii)
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Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

                              

0 4
100 20

0 03

0 4
100 20

0 03

1 1 2

1 1 2

. .4 0

. .4 0 ( )1 2

= +1 −
+

= +1 −
+ 0 030 (

V V1 1 V2
V

V V1 1 V2
1 21

xVV

   

1

100

1

20
0 03

1

20
0 03 0 4

0 09 0 08 0

2
20

1

1 2

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

=2

.03
⎠⎠⎠

.

.09 .

2V
1

0 030 031 +⎛⎛⎛
01

V V0 081 20 080 08 20 081 0 44
 

…(iii)

Applying KCL at Node 2,

  

V V V V V

V V V

2 1V VV V 2 2V VV V 3VV

1 2V VV V 3VV

20 40 40
0

1

20

1

20

1

40

1

40

1

40
0

0

+ +2 −
=

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3VV

− .. .05 0 1 0 025 01 2 3V V0 11 20. V3−2V0 1 20 1. =  
…(iv)

For Node 3,

            

V I
V

V

V

y3VV
2VV

2VV

2 3V V

80 80
40

2

2 0V V3V VV V

=I
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

V3VV
 

…(v)

Solving Eqs  (iii), (iv) and (v),

V

V

V

1VV

2VV

3VV

40

40

80

=
=
=

V

V

V

  Example 2.82  Find voltages Va , Vb and Vc in the network shown in Fig. 2.117.

1 Ω4 A

2 V 3 Ω2 Ω

2 Ω

5 Ω

I1

Va
Vb

Vc

2I1

Fig. 2.117

Solution From Fig. 2.117,

       
I

V Va cV VV V
1

2
=

Assume that the currents are moving away from the nodes.
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Applying KCL at Node a,

          

4
1 2

2

2

1
1

2

1

2

1

2

1

2
5

2 0

= +
−

+
− −2

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

V V V V V

V V
1

V

V 0

a a+
V VV V c a+

V VV V bVV

a b c
2 2

−V VV V− VV

a bV VV V00. 0−V5 bVV5VV55 0 500 5VcVV = …(i)

Applying KCL at Node b,

          

V V V V
I

V V V V V V

b aV VV V b cV VV V

b aV VV V b cV VV V a cV VV V

+ =

+ = ⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

2

2 3
2

2

2 3
2

2

1

 

V V V V
V V

V V

b aV VV V b cV VV V
a cV VV V

a bV VV V

+ = V

− −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+ −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠

2

2 3

1

2
1

1

2

1

3
1

1

3
⎟⎟
⎞⎞⎞⎞
⎠⎠⎠⎠

= −

− = −

V

V + V

cVV

a bV VV V+ cVV

1

1 5 0 83 0+VbVV 67 1. VVV +5 .
…(ii)

Applying KCL at Node c,

          

V V V
I

V V V V V

c bV VV V cVV

c bV VV V c aV VV V cVV

+ =c

+ =c −
3 5

3 5 2

1

− + + +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

− =

1

2

1

3

1

3

1

5

1

2
0

0 5 0 33 1+ 033 0

V V
1

V

V 0 33 V

a b
3

V VV V− cVV

a bV VV V− 0 33 cVV.5VVV 0 . …(iii)

Solving Eqs  (i), (ii), and (iii),

                    

V

V

V

aVV

b

c

=
=

=

4 303

3 88

3 33

. V

V

V

2.6    SUPERNODE ANALYSIS

Nodes that are connected to each other by voltage sources, but not to the reference node by a path of voltage 

sources, form a supernode. A supernode requires one node voltage equation, that is, a KCL equation. The 

remaining node voltage equations are KVL equations.
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Example 2.83  Determine the current in the 5 W resistor for the network shown in Fig. 2.118.

3 Ω 1 Ω 2 Ω
5 Ω

2 Ω

10 A

V1 V2 V3

10 V

20 V

Fig. 2.118

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

 

10
3 2

1

3

1

2

1

2
10

0 83 0 5 10

1 1 2

1 2
2

1 2

= +1 −

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2

V V1 1 V2

V V
1

1 22

V 0 51 20 50 50 5.83 1 0

 
…(i)

Nodes 2 and 3 will form a supernode.

Writing voltage equation for the supernode,

 
V V2 3V VV V 20=V3VV

 
…(ii)

Applying KCL at the supernode,

 

V V V V V

V V V

2 1V VV V 2 3V VV V 3VV

1 2V VV V 3VV

2 1

10

5 2
0

1

2

1

2
1

1

5

1

2
2

+ +2 −
+ =3

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

++ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

−0 500 1 5 0 7 21 2 3.5V V1 51 2511 1 V3+2V1 5 21 51 =

 
…(iii)

Solving Eqs  (i), (ii) and (iii),

 

V

V

V

1VV

2VV

3VV

19 04

11 6

8 4

=
=
= −

.

.

V

V

V

 
I

V
5

3VV 10

5

8 4 10

5
3Ω =

−
=

− −8 4
= − . A68
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  Example 2.84  Find the power delivered by the 5 A current source in the network shown in Fig. 2.119.

3 Ω

1 Ω

5 Ω

2 Ω

2 A

10 V

5 A

V2V1

V3

Fig. 2.119

Solution Assume that the currents are moving away from the nodes.

Nodes 1 and 2 will form a supernode.

Writing voltage equation for the supernode,

V V1 2V VV 10=V2VV …(i)

Applying KCL at the supernode,

2
3 5 1

5

1

3

1

5
1

1

3
1 3

0 33

1 3 2 2 3

1 2
5

3

+ + +2 −
=

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+− ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎠⎠

V V1 3 V V2 2 V3

V V
1

11 21++ ⎛⎛⎛ ⎞⎞⎞
V3

V1 211VVVV 31 2 1 33 33+1 2 V2V 31 33 3−2 .2 12 …(ii)

Applying KCL at Node 3,

       

V V V V V

V V V

V

3 1V VV V 3 2V VV V 3VV

1 2V VV V 3VV

1 2V VV

3 1 2
0

1

3

1

3
1

1

2
0

0 33 1V V2V VV V

+ + =3

− VVV ++ +⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

−0 33VVV. .33 1V 2V VV 8388 03V3 =  
…(iii)

Solving Eqs  (i), (ii) and (iii),

               

V

V

V

1VV

2VV

3VV

13 72

3 72

4 51

=

=

=

. V

V

V

Power delivered by the 5 A source = 5 V2 = 5 × 3.72 = 18.6 W
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  Example 2.85  In the network of Fig. 2.120, fi nd the node voltages V1, V2 and V3.

1 Ω0.2 Ω

0.5 Ω

0.33 Ω

4 A

V1

V2
V3

5 V

Fig. 2.120

Solution Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

4
0 33 0 5

1

0 33

1

0 5

1

0 33

1

0 5
4

5 0

1 2 1 3

1 2
0 33

3

= +

+⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

−2 =

V V1 2 V V1 3

V V
1

1 22 V3

. .33 0

. .33 0 . .33 0

. 303 333 03 2 41 2 3V V3 031 23 03 V3−223 03 …(i)

Nodes 2 and 3 will form a supernode.

Writing voltage equation for the supernode,

V V3 2V VV 5=V2VV
 

…(ii)

Applying KCL at the supernode,

V V V V V V

V

2 1V VV V 2 3V VV V 3 1V VV V

1VV

0 33 0 2 1 0 5
0

1

0 33

1

0 5

1

0 33

1

0

+ +2 + =

− −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

++

. .33 0

. .33 0 ..2
1

1

0 5.
0

5 0. 3 8 03 3 0

2 3
0 5

1 2 3

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

=

−5 0. 3 + 3

V31
1

V2 +11+ ⎛⎛⎛ ⎞⎞⎞

V V8 031 2.8 03 V3  
…(iii)

Solving Eqs  (i), (ii) and (iii),

V

V

V

1VV

2VV

3VV

2 62

0 17

4 83

=
= −
=

V

V

V

EXAMPLES WITH DEPENDENT SOURCESEXAMPLES WITH DEPENDENT SOURCES

  Example 2.86  For the network shown in Fig. 2.121, determine the voltage Vx.

3 Ω 4 Ω

11 Ω

7 Ω

10 Ω

2 A

6 V

8 V

5 V

12 A

V1 V2

Vx

2 Vx

V3

++
−

+ −Vx

Fig. 2.121
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Solution From Fig. 2.121,

                
V V VxVV V2 3V VV−VV

Assume that the currents are moving away from the nodes.

Node 1 and 2 will form a supernode.

Writing voltage equations for the supernode,

                   
V V1 2V VV 6=V2VV

 
…(i)

Applying KCL at the supernode,

                               

2
4

2

10

8

7 11

2
4

2

10

1 2 2 38 2 3

1 2 2

= +
−

+
8

+

= +
− 2

+
−

V V51 25+ V V2 V V3 2 V3

V V51 25+ V2

xVV

( )2 3V V2 32 88

7 11

3 2 3−
+

−V V3 2 V3

1

4

1

10

1

5

1

7

1

11

1

5

1

7

1

11
2

5

4

8

7

0 25

1 2
10 5 7 11

3

1

V2

1 1 1 1
V1 V3

V1

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+ − −⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= −2 +

+++ =0 133 0 033 1 892 3.133V − 0 V0332 3− 0 0332 0 …(ii)

Applying KCL at Node 3,

                  

V V V V

V V

3 2V VV V 3 2V VV V

2 3V VV V

11

8

7
12 0

1

11

1

7

1

11

1

7
12

8

7

+ + =12

− −⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

= − −

−−− = −0 233 0 233 13 142 3. 33 .V + V0 2332 3+ 0 2332 + 0 …(iii)

Solving Eqs  (i), (ii) and (iii),

        

V

V

V

1VV

2VV

3VV

1 8

4 2

60 6

=
= −
= −

.

.

V

V

V

  Example 2.87  Find the node voltages in the network shown in Fig. 2.122.

6 Ω

5 Ω

10 Ω 20 Ω 15 Ω

2 Ω

6 A
40 V

− +
5ix

ixV1 V2 V3
V4

Fig. 2.122

Solution From Fig. 2.122,

I
V V

x = 2 1V VV V

5  
…(i)

For Node 4,

  V4VV 40=  
…(ii)
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Applying KCL at Node 1,

  

6
10 5 6

0

6
10 5

40

6
0

1 1 2 1 4

1 1 2 1

+ +1 −
+

−
=

+ +1 −
+

−
=

V V1 1 V V2 1 V4

V V1 1 V V2 1

           

1

10

1

5

1

6

1

5

40

6
6

7

15

1

5

2

3

1 2
5

1 2
5

+ +⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2 −

=2

V V
1

1 22

V V
1

1 22

 
…(iii)

Nodes 2 and 3 will form a supernode,

Writing voltage equation for the supernode,

                                       
V V

V V
V Vx3 2V VV

2 1V VV V
2 1V VV5 5I x

5
=V2VV

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= VVV

               V V1 2V VV 3V2 0V V2V 3VVV2VV  
…(iv)

Applying KCL to the supernode,

            

V V V V V V

V V V V V

2 1V VV V 2 3V VV V 3 4V VV V

2 1V VV V 2 3V VV V 3VV
5 20 15 2

0

5 20 15

40

2
0

+ +2 + =

+ +2 +
−

=

  

− ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

++ ⎛
⎝
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=

− + =

1

5

1

5

1

20

1

15

1

2
20

1

5

1

4

17

30
20

1 2⎝⎝⎝ ⎠⎠⎠5 20
3

1 2
4

3

V V+ +⎛⎛⎛ ⎞⎞⎞1 1
1 2+ +⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

V3

V V+
1

1 2+ V3

 
…(v)

Solving Eqs  (iii), (iv) and (v),

                     

V

V

1VV

2VV

10

20

=
=

V

V

                     

V

V

3VV

4VV

30

40

=
=

V

V

  Example 2.88  Find the node voltages in the network shown in Fig. 2.123.

2 Ω

1 Ω2.5 Ω

0.5 Ω

12 V

14 A

V2

V1 V3

V4

+++

Vy

Vx

0.5 Vx

0.5 Vy

−

+

+

−
−

Fig. 2.123



Exercises 2.69

Find 2.1 Ix and Vx in the network shown in Fig. 2.124.

10 V

1 A

4 A

3 A

2 A

Vx

Ix

+

−
5 Ω

a b
10 V

cd

Fig. 2.124

 [ , ]V, 1, − 5

Find 2.2 V1 and V2 in the network shown in 

Fig. 2.125.

9 V

12 1V 0 V

3 V

18 V

V2

V1

+

−

Fig. 2.125

  [ , ], V,5,

Solution Selecting the central node as reference node,

V1VV 12= − V
 …(i)

Applying KCL at Node 2,

V V V V

V V V

V V

2 1V VV V 2 3V VV V

1 2V VV V 3VV

1VV

0 5 2
14

1

0 5

1

0 5

1

2

1

2
14

2 2V

+ =

− VVV
⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

− =V3VV

−2 VVV

.0.5 ⎝

2 322VVVV 0 5 14=30 5 3V3 …(ii)

Nodes 3 and 4 will form a supernode,

Writing voltage equation for the supernode,

   

V V V

V V V

yVV3 4V VV V

1 3V VV 4VV

0 2 0 2

0 2 1 2 0

=V4VV

−V3VV =

. VVV2 ( )V V4 1VV VVV4VV

. .V 3V VV2 13VV
 

…(iii)

Applying KCL to the supernode,

V V
V

V V V

V V
V V V

V V

xV
3 2V VV V 4 4V VV V 1VV

3 2V VV V
2 1V VV V 4VV

4 1V VV V

2
0 5

1 2 5
0

2
0

2 5
0

− +VxVV0 5 +
−

=

VVV− 0 + +V4VV =

.

. (5(55 )

0 5
1

2 5

1

2
0

1

2
1

1

2 5
0

0 1

1 2
2

3 4
2 5

−⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝
⎛⎛
⎝⎝

⎞
⎠
⎞⎞
⎠⎠

+ ⎛
⎝⎝⎝
⎛⎛ ⎞

⎠
⎞⎞
⎠⎠

=V2

1
0 50 5+V1

⎛⎛⎛ ⎞⎞⎞
V41

1
1+⎛

V3 +3
⎛⎛ ⎞⎞⎞

V1 211VVVV 3 30 1 4 0=3+1 4V V2 V30 5+2 3V33V35
 

…(iv)

Solving Eqs (i), (ii), (iii) and (iv),

V

V

V

V

1VV

2VV

3VV

4VV

12

4

0

2

= −
= −
=
= −

V

 V

 V

Exercises
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2.70 Network Analysis and Synthesis

Find the values of unknown currents in the 2.3 

network shown in Fig. 2.126.

5 A

10 A
7 A 1 A

6 A

12 A

8 A

I1 I2 I4

I3

Fig. 2.126

[ , , ]I2, 3 4,4 0A2I2I, I2I A A1I4I, 0I4I

Find the current in the branch 2.4 XY as shown in 

Fig. 2.127.

0.05 Ω

0.05 Ω 0.05 Ω
0.1 Ω

0.1 Ω

40 A

70 A50 A

160 A X

Y

Fig. 2.127

[ ]

Find 2.5 I and VAB for the network as shown in 

Fig. 2.128.

5 Ω

4 Ω

2 Ω 3 Ω
1 A 6 A

12 V
1 A

B

A

I

+
−

Fig. 2.128

  [ , ]V, 1, 9

In the network shown in Fig. 2.129, fi nd the 2.6 

voltage between points A and B.

5 Ω

3 Ω

2 Ω 6 Ω 5 Ω

3 Ω

2 Ω

6 V

30 V

A

2 A

B B2 Ω

Fig. 2.129

 [ ]

In the network shown in Fig. 2.130, fi nd the 2.7 

voltage between points A and B.

10 Ω

15 Ω 4 Ω

6 Ω

4 Ω

10 Ω

5 Ω

30 V

20 V5 V
A

B

Fig. 2.130

[ ]

MESH ANALYSIS

Find the current through the 10 2.8 Ω resistor in 

the network shown in Fig. 2.131.

4 Ω 15 Ω

6 Ω 10 Ω 5 Ω

20 V5 V

2 V

Fig. 2.131

[ .6. 8 A]

Find the current through the 20 2.9 Ω resistor in 

the network shown in Fig. 2.132.

15 Ω 60 V

20 V 20 Ω 15 Ω

10 Ω 5 Ω

5 Ω40 V

Fig. 2.132

[ .4. 6 A]

Find the current through the 10 2.10 Ω resistor in 

the network shown in Fig. 2.133.

10 Ω 30 Ω

20 Ω 100 V5 Ω10 A

Fig. 2.133

[ .3. 7 A]
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Find the current through the 1 2.11 Ω resistor in the 

network shown in Fig. 2.134.

1 Ω

2 Ω
3 Ω 1 A 2 Ω

10 V

Fig. 2.134

[ .9. 5 A]

Find the current through the 4 2.12 Ω resistor in the 

network shown in Fig. 2.135.

6 V

2 Ω 2 A 4 Ω5 A

Fig. 2.135

[ .3. 3 A]

Find currents 2.13 Ix and Iy in the network shown 

in Fig. 2.136.

2IY

2Ix

10IY

Ix Iy

I1 I2

I3

2 Ω

5 Ω 2 Ω

2 Ω

4Ix

5 V

+ − + −

+
−

Fig. 2.136

 [ . , .5. .A A, 0 1. ]

In the network shown in Fig. 2.137, fi nd 2.14 V3 if 

element A is a

 (i) short circuit

 (ii) 5 Ω resistor

 (iii) 20 V independent voltage source, positive 

reference on the right

 (iv) dependent voltage source of 1.5 i1, with 

positive reference on the right

 (v) dependent current source 5 i1, arrow 

directed to the right

10 Ω

30 Ω

20 Ω

40 Ω

30 Ω

80 V

i1

V3

A

+

−

Fig. 2.137

[ . ,4 97 39V, V, V, V V, .9, 7 3. 9 ]

Find currents 2.15 I1, I2, and I3 in the network 

shown in Fig. 2.138.

2 Ω

1 Ω

3 Ω

2 Ω

1 Ω I2

I3

I1

1

9
Vx

Vx+ −Vx
15 A

Fig. 2.138

[ , A, 11 , 17 A]

Find currents 2.16 Ix in the network shown in Fig. 

2.139.

5 Ω

25 Ω20 Ω

10 Ω
2 A 5 A1.5 Ix

Ix

Fig. 2.139

[ .3. 3 A]

Find currents 2.17 I1 in the network shown in Fig. 

2.140.

5 Ω 2 Ω 4 Ω19 V

25 V30 V

I1

1.5I14 A

Fig. 2.140

[−12 A]



2.72 Network Analysis and Synthesis

NODE ANALYSIS

Find the current 2.18 Ix in the network shown in 

Fig. 2.141.

20 Ω

5 Ω 20 Ω

36 V2 A24 V

Ix

Fig. 2.141

[ . ]9. 3 A

Find 2.19 VA and VB in the network shown in 

Fig. 2.142.

2 Ω

2 Ω1 Ω

2 Ω2 12 ΩA A

1 V

2 V

VBVA

Fig. 2.142

[ . , ]8. 8 3 25V V, .3, 25

Find the current through the 6 2.20 Ω resistor in the 

network shown in Fig. 2.143.

10 Ω 5 Ω4 A 310 Ω 5 Ω A

10 V

6 Ω

2 Ω

Fig. 2.143

[ . ]0. 4 A

Calculate the current through the 10 2.21 Ω resistor 

in the network shown in Fig. 2.144.

10 Ω

7 Ω

4 Ω 2 Ω

3 Ω2 Ω

25 V 12 V
+
−

−
+

Fig. 2.144

[ . ]6. 2 A

Find the current through the branch 2.22 ab in the 

network shown in Fig. 2.145.

10 Ω

2 Ω

2 Ω

1 Ω

1 Ω

10 Ω

10 V

a

b

Fig. 2.145

[ . ]038 A

Find the current through the 4 2.23 Ω resistor in the 

network shown in Fig. 2.146.

2 Ω

2 Ω

4 Ω

2 Ω

2 Ω2 Ω

6 V

10 V

5 A

Fig. 2.146

[ . ]3. 4 A

Find the current through the2.24  4 Ω resistor in the

network shown in Fig. 2.147.

2 Ω

2 Ω

6 V 2 V

3 Ω

2 Ω

4 Ω

2 A

3 A

Fig. 2.147

[1 A]

Find the voltage 2.25 Vx in the network shown in 

Fig. 2.148.
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Vx

I1

4I1

2 Ω

1 Ω

1 Ω

8 V4 V

+

−

Fig. 2.148

[ .3. 1 V]

Find the currents 2.26 Vx in the network shown in 

Fig. 2.149.

Vx

4Vx

3V1

5 Ω

6 Ω4 Ω7 A

+ −Vx

Fig. 2.149

[ .0. 9 V]

Find the voltage 2.27 Vx in the network shown in 

Fig. 2.150.

Vx

3I

1 Ω 0.5 Ω

Ω

0.5 Ω
1 V

1

3

Fig. 2.150

[ .2. V]

Determine 2.28 V1 in the network shown in 

Fig. 2.151.

50 Ω

20 Ω 20 Ω

+
V1

−
0.4V1 0.01V15 A

++
−

Fig. 2.151

[140 V]

Find the voltage 2.29 Vy in the network shown in 

Fig. 2.152.

Vy

0.5Vy

15 Ω 3 20 Ω4 A 63 Ω A

+ − +

−

Fig. 2.152

[−10 V]

Find the voltage 2.30 V2 in the network shown in 

Fig. 2.153.

5 Ω

2 Ω

2.5 Ω
+

V2

−

0.8V2

5 A

8 A

+ −

Fig. 2.153

[ .9 V]

Objective–Type Questions

Two electrical sub-networks 2.1 N1 and N2 are 

connected through three resistors as shown 

in Fig. 2.154. The voltages across the 5 Ω
resistor and 1 Ω resistor are given to be 10 V 

and 5 V respectively. Then the voltage across 

the 15 Ω resistor is 

(a) −105 V (b) 105 V 

(c) −15 V (d) 15 V

5 Ω

15 Ω
1 Ω

10 V

5 V

N1 N2

+ −5 Ω

+ −

Fig. 2.154
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The nodal method of circuit analysis is based 2.2 

on

KVL and Ohm’s law(a) 

(b) KCL and Ohm’s law

(c) KCL and KVL

(d) KCL, KVL and Ohm’s law

The voltage across terminals 2.3 a and b in 

Fig. 2.155 is

2 Ω 1 Ω

2 Ω
+
−1 V

3 A

a

b

Fig. 2.155

0.5 V (b) 3 V(a) 

(c) 3.5 V (d) 4 V

The voltage 2.4 V0 in Fig. 2.156 is

2 Ω

10 Ω 12 Ω
6 Ω

+
V0

−
8 A

16 V

Fig. 2.156

48 V (b) 24 V(a) 

(c) 36 V (d) 28 V

The dependent current source shown in 2.5 

Fig. 2.157.

5 Ω

5 Ω

V1V1 = 20 V

5

Fig. 2.157

delivers 80 W(a) 

(b) absorbs 80 W

(c) delivers 40 W

(d) absorbs 40 W

If 2.6 V = 4 in Fig. 2.158, the value of Is is given 

by

IS

V4 Ω

1 Ω

2 Ω 2 Ω

Fig. 2.158

6 A (b) 2.5 A(a) 

(c) 12 A (d) none of these

The value of 2.7 Vx,Vy and Vz in Fig. 2.159 

shown are

+
8 V

−

+
2 V

−

+ Vx − + Vy − + Vz −

+
2 V

−

+
1 V

−

Fig. 2.159

 (a) −6, 3, −3 (b) −6, −3, 1

(c) 6, 3, 3 (d) 6, 1, 3

The circuit shown in Fig. 2.160 is equivalent 2.8 

to a load of

2 Ω

4 Ω

I

2I
+
−

Fig. 2.160

4

3
Ω(a)  (b) 

8

3
Ω

4 Ω(b)  (d) 2 Ω

In the network shown in Fig. 2.161, the effective 2.9 

resistance faced by the voltage source is

4 Ω

V

4

i

i

Fig. 2.161



Answers to Objective-Type Questions 2.75

Answers to Objective-Type Questions

2.1. (a) 2.2. (b)  2.3. (c)  2.4. (d)  2.5. (a)  2.6. (d)  2.7. (a)

2.8. (a) 2.9. (d) 2.10. (b) 2.11. (b) 2.12. (b) 2.13. (c) 2.14. (b)

(a) 4 Ω  (b) 3 Ω

(c) 2 Ω  (d) 1 Ω

A network contains only an independent 2.10 

current source and resistors. If the values of 

all resistors are doubled, the value of the node 

voltages will

(a) become half 

(b) remain unchanged 

(c) become double 

(d) none of these
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 Example 6.2  Find mesh current I
1
, I

2
 and I

3
 in the network of Fig. 6.2.

10∠30° V

j5 Ω−j− 2 Ω

−j− 2 ΩI1 I2 I3

5 Ω

3 Ω 5 Ω
2 Ω+

−

Fig. 6.2

Solution Applying KVL to Mesh 1,

10 ∠30° − (5 − j2) I
1
 − 3 (I

1
 − I

2
) = 0

  (8 − j2) I
1
 − 3I

2
 =  10∠30°  … (i)

Applying KVL to Mesh 2,

             −3 (I
2
 − I

1
) − j5I

2
 − 5 (I

2
 − I

3
) = 0

                −3I
1
 + (8 + j5) I

2
 − 5I

3 
= 0 … (ii)

Applying KVL to Mesh 3,

            –5 (I
3
 – I

2
) – (2 – j2) I

3
 = 0

           –5I
2
 + (7 – j2) I

3 
= 0 … (iii)

Writing Eqs (i), (ii) and (iii),

8 2 3 0

3 8 5 5

0 5 7 2

10 30

0

0

1

2

3

−2

− +3 8

5 7

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °30⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤j

j

j

I

I

I ⎦⎦

⎥
⎤⎤

⎥
⎦⎦⎦⎦

⎥⎥

By Cramer’s rule,

I1

10 30 3 0

0 8 5 5

0 5 7 2

8 2 3 0

3 8 5 5

0 5 7 2

1 43 38 7=

∠ °30 −
+ 5

5 7

−2

− +3 8

5 7

= 1 43

j

j

j

j

j

. .3 3843 °° A

 

         

I2

8 2 10 30 0

3 0 5

0 0 7 2

8 2 3 0

3 8 5 5

0 5 7 2

0 693 2 2=

∠2 10 °
− −3 0

−2

− +3 8

5 7

= ∠0 693 −

j

j

j

j

j

. .693 2∠693 °° A

 

I3

8 2 3 10 30

3 8 5 0

0 5 0

8 2 3 0

3 8 5 5

0 5 7 2

0 4 6 13=

−2 ∠ °30

− +3 8

−2

− +3 8

5 7

= ∠0 476

j

j

j

j

j

. .476 13∠476 88° A  



6.2 Mesh Analysis 6.3

 Example 6.3  In the network of Fig. 6.3, fi nd the value of  V
2
  so that the current through (2 + j3) ohm 

impedance is zero.

30∠0° V

j3 Ω

j5 Ω 6 Ω

I1 I2 I3

V2

5 Ω 2 Ω 4 Ω

+

−

+

−

Fig. 6.3

Solution Applying KVL to Mesh 1,

     30∠0° − 5I
1
 − j5 (I

1
 − I

2
) = 0

                  (5 + j5) I
1
 − j5I

2
 = 30 ∠0° …(i)

Applying KVL to Mesh 2,

       −j5 (I
2
 − I

1
) − (2 + j3) I

2
 − 6 (I

2
 − I

3
) = 0

          −j5I
1
 + (8 + j8) I

2
 − 6I

3
 = 0 …(ii)

Applying KVL to Mesh 3,

    −6(I
3
 − I

2
) − 4I

3
 − V

2 
= 0

        −6I
2
 + 10I

3 
= −V

2
 …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

           

5 5 5 0

5 8 8 6

0 6 10

30 0

0
1

2

3 2

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °0⎡

⎣⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
j j5 −5

j j5 8 +5 8

I

I

V2I3 ⎦⎦⎦ ⎣⎣⎣

⎤⎤

⎦

⎥
⎤⎤⎤⎤

⎥
⎦⎦

⎥⎥

 

By Cramer’s rule,

  I
V

2
2V

5 5 30 0 0

5 0 6

0 1V2VV 0

5 5 5 0

5 8 8 6

0 6 10

0=

+ ∠5 30 °
− −5 0

−

=

j

j

j j5 −5

j j5 8 +5 8

 

  

( ) ( ) ( ) ( )

.

) ( ) ( 0)

1500

30 30
35 36 452 =

+
= ∠.35 36 °

j j) ( ) ( ) () ( ) () ( ( ) (

j

j
V2  V

 Example 6.4  Find the value of the current I
3
 in the network shown in Fig. 6.4.

20∠0° V

10∠30° V

j10 Ω

−j− 4 Ω

−j− 4 Ω

I1 I2

I3

4 Ω

10 Ω

20 Ω

4 Ω

20 Ω

+
+ −

−

Fig. 6.4
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Solution Applying KVL to Mesh 1,

20∠0° − (4 − j4) I
1
 − j10 (I

1
 − I

2
) − 10 (I

1
 − I

3
) = 0

 (14 + j6) I
1
 − j10I

2
 − 10I

3 
= 20 ∠0° … (i)

Applying KVL to Mesh 2,

    −j10 (I
2
 − I

1
) − 10∠30° − 20I

2
 − (4 − j4) (I

2
 − I

3
) = 0

    −j10I
1
 + (24 + j6) I

2
 − (4 − j4) I

3
 = −10∠30° … (ii)

Applying KVL to Mesh 3,

   −10(I
3
 − I

1
) − (4 − j4) (I

3
 − I

2
) − 20I

3 
= 0

               −10I
1
 − (4 − j4) I

2
 + (34 − j4) I

3
 = 0 … (iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

14 6 10 10

10 24 6

10 34 4

1

2

3

+
−
− −10

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡j j66

j j10 24 +10 24

j34 −34

( )4 4−4 j

( )4 4j44

I

I

I⎣⎣

⎢
⎡⎡

⎢
⎣⎣⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °

− ∠ °
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
20 0

10 30

0

By Cramer’s rule,

I3

14 6 10 20 0

10 24 6 10 30

10 0

14 6 10 10

1

=

+ ∠ °0

− 10 °
− −10

+ 6

−

j j66

j j10 24 +10 24

j

j

( )4 4j

0 200 4 6

10 34 4

0 44 14

− −10

= 0 44 − °14

j6 −6

j34 −34

( )4 4j4

( )4 4j44

. 14∠44 A

 Example 6.5  Find the voltage V
AB

 in the network of Fig. 6.5.

10∠0° V

−j− 50 Ω

j200 Ω

I2

I1

100 Ω

4 Ω100 Ω

1 Ω

96 Ω

+ −

A

B

Fig. 6.5

Solution Applying KVL to Mesh 1,

− 96 I
1
 − (100 + 4 + j200) (I

1
 − I

2
) + 10 ∠0° = 0

 (200 + j200) I
1
 − (104 + j200) I

2
 = 10 ∠0° …(i)

Applying KVL to Mesh 2,

− (1 − j50 − 100) I
2
 − (100 + 4 + j200) (I

2
 − I

1
) = 0

 − (104 + j200) I
1
 + (205 + j150) I

2 
= 0 …(ii)

Writing Eqs (i) and (ii) in matrix form,

            
200 200

205 150

101

2

+
−

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠j200 −200

j205 +
( )104 200j104 +

( )104 200+104 j200

I

I

00

0

°⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 



6.2 Mesh Analysis 6.5

By Cramer’s rule,

          I1

10

0 205 150

200

∠ °0 −
+

+

200+

200

200+104

j

− 104 +
150+

0 10

j

A  

I2

200 0

0

200

+ ∠200 10

−
+

−
−

200+ j

200j104 +
200+104 j 150

26 34

+

°

j

 A  

     
= ∠ −26 051

− 2

°34 ( )j+4 200 ( .0 ∠−− 045 °
 V

 Example 6.6  For the network shown in Fig. 6.6, fi nd the voltage across the capacitor.

5∠0° V
j3 Ω

j2 Ω

j1 Ω

j2 Ω
I1

I3

I2
2 Ω1 Ω 3 Ω

1 Ω1 Ω

+

Fig. 6.6

Solution Applying KVL to Mesh 1,

00 − )2  

0∠5 ° …(i)

Applying KVL to Mesh 2,

=2 −  

        =2 03I− +   …(ii)

Applying KVL to Mesh 3,

+ 2 0=+) − +  

− ++ + ( 0=)   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

  2 5

2 2 2

51

2

3− +

⎡ ⎡ ⎤2−
2

j j

3j+1

3

I

I

I

⎤
0

0
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By Cramer’s rule,

I2

2 0 2

2−

5 5

j

j0 2 +
2−

2

1

1

3j+1

( 2

130 51

+

°

j

A

        

I3

2 5

2 0

2 0

− ∠ °0

−

−

j

j

2−
2

3

3j+

1 2

0 9

912 0

A

V − ∠130 = 3 0°51 V

 

 Example 6.7  Find the voltage across the 2 W  resistor in the network of Fig. 6.7.

+
2∠30° A 8∠45° V

I1 I2

3 Ω

2 Ω

j1 Ω

Ω

Fig. 6.7

Solution For Mesh 1,

I1 0= 2 °   …(i)

Applying KVL to Mesh 2,

− ∠− − 45 0−) ( )

     = 45   …(ii)

Substituting I
1
 in Eq. (i),

             

8

2 1
2

∠ °45

=I 9 65

19 65 8 32 0 3 72 2 ∠ − ° 84 37

A

VV

 



6.2 Mesh Analysis 6.7

 Example 6.8  Find the current through 3 W resistor in the network of Fig. 6.8.

+

−
10∠0° V

1∠0° A

I1 I2 I3

3 Ω

1 Ω

5 Ω

j2 Ω

j1 Ω

Fig. 6.8

Solution Applying KVL to Mesh 1,

10 0 2 3 1 01 13∠ °0 2 1 =j I 31 31 ( )1 2I I11  

          ( ) 10 01 2) = ∠10 °I I1 −1   …(i)

Meshes 2 and 3 will form a supermesh.

Writing current equation for the supermesh,

                 I I3 2I 1 0=I2I ∠ °0   …(ii)

Applying KVL to the outer path of the supermesh,

       −1 5− 1 0=3 31( )2 1− I 13 − 1j

                   I I I1 2I 3 0−2I =I3)1( )5 11   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

4 2 1 0

0 1 1

1 1

10 0

1 0

0

1

2

3

−2

−1

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
∠ °0

∠ °0

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
j

( )5 1j

I

I

I

⎤⎤

⎦

⎥
⎤⎤⎤⎤

⎥
⎦⎦

⎥⎥

By Cramer’s rule,

    
I1

10 0 1 0

1 0 1 1

0 1

4 2 1 0

0 1 1

1 1

2 11 28=

∠ °0

∠ °0 −
−1

−2

−1

= ∠2 11
( )5 1

( )5 1

.
j

..

.

01

2 1. 1 28 0. 13 1

°

=1 °

A

AI I3 =Ω

 Example 6.9  Find the currents I
1
 and I

2
 in the network of Fig. 6.9.

−

+
+

−
9∠0° V

I1 I2

Vx

6 Ω

3 Ω−j− 3 Ω

2Vx

− +

Fig. 6.9



6.8 Network Analysis and Synthesis

Solution From Fig. 6.9,

   VxV j= − 3( )1 21 −   …(i)

Applying KVL to Mesh 1,

9 0 6 3 01 3∠ °0 − 6 =33j ( )1 22−I I

( ) 3 9 023 ∠9 °j j) 1) I 33j1 +1   …(ii)

Applying KVL to Mesh 2,

  
j

j j

x3 2 3 0

3 3 2 3 0

2

1j3j 1 2 2

( )2 1

[ (j3j )]I3j I I1

− 3

+1I3j3j (3j I1 − 3

Vx
 

  j9 02( )j( )3 9j9j3 9j9   …(iii)

Writing Eqs (ii) and (iii) in matrix form,

6 3 3

9 3 9

9 0

0
1

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j3

j j9 3 −
I

I

By Cramer’s rule,

I

I

1

2

9 0 3

0 3 9

6 3 3

9 3 9

1 3 2 49

6 3 9 0

9 0

6 3 3

=

∠ °0

−
= ∠1 3 °

=

3 9 °

j

j

j j3

j j9 3 −

j

j

j j3

j

. .3 2∠3 A

9 399 9

1 24 15 95

−

= 1 24 − °15 95

j

. .15∠24 A

 

 Example 6.10  Find the voltage across the 4 W resistor in the network of Fig. 6.10.

6∠30° V

I1 I2

4 Ω2 Ω

j2 Ω

−j− 1 Ω

+
−

+−

Ix

2Ix

Fig. 6.10

Solution From Fig. 6.10,

I Ix 1  …(i)

Applying KVL to Mesh 1,

   
− ∠ ° =
− ∠ °
2 6 1 2 0

2 6 1 1 2 0=
1 6 30

1 6 30 2 12

∠ ° +6+ 1∠ +6+ I2−
∠ ° +6+ 1∠ +6+ I 22 − 2

j

j j−11

x( )−1 2
 

       ( ) 1 6 3021 ∠6 °j j) 1) I 11j1 +1   …(ii)



6.3 Node Analysis 6.9

Applying KVL to Mesh 2,

0

4 0

=

0=   …(iii)

Writing Eqs (ii) and (iii) in matrix form,

1

0
1

2

⎡ ⎤ = 30⎡ ⎤1

− 4

I

I

By Cramer’s rule,

I2

0

2 1 0

1

0

1 6 °

= 4
1

−

V

4

(

A

74 2. 2 1∠ − ∠− ° V

6.3    NODE ANALYSIS

Node analysis uses Kirchhoff’s current law for fi nding currents and voltages in a network. For ac networks, 

Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

Example 6.11  In the network shown in Fig. 6.11, determine V
a 
and V

b
.

10∠0° V

3 Ωj6 Ω j5 Ω

j4 Ω j4 Ωj6 Ω
+

−

Va Vb

Fig. 6.11

Solution Applying KCL at Node a,

j j j

+ =

=V
∠ °

3
0

1 1

6

1

3

1

3

10

6

1 67 90= °   …(i)

Applying KCL at Node b,

  

V V

j j

+ + =

−

1
0

1

3

1

3

1 1

1
0

 

  − 0b−   …(ii)



6.10 Network Analysis and Synthesis

Adding Eqs (i) and (ii),

  
− ∠− °

=
°

−
= °

j

j

b

b

1 25 1=b 67 90

1 67 9∠− 0

1 25
1 34 0∠

.1b.25

.

Vbbb

Vb V

 

Substituting V
b
 in Eq. (i),

   
0 33 0 33 34 0 67 90

1 73 17

0 33
5 24 75

.0.33 ( .1(1 ) .1

. .73 75
. .4 75

V

V

aVV

aVV

340 33.0 (1 °) °

=
∠ °75 1775

= 5 2424 1711 ° V

 

 Example 6.12  For the network shown in Fig. 6.12, fi nd the voltages V
1
 and V

2
.

50∠0° V 50∠90° V

5 Ω 4 Ω 2 Ω

−j− 2 Ωj2 Ω
+

−

+

−

V1 V2

Fig. 6.12

Applying KCL at Node 1,

  

V V V V

V V

1 1V VV V 1 2V VV

1 2V VV

0 0

5 2 4
0

1

5

1

2

1

4

1

4
10 0

45

∠0 °
+ +1 =

+ +
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=V2V ∠ °0

−

j

j

j( .0 000 0 25 10 01 2. )5 V 0 251 20 250 250 25 ∠ °0

  

…(i)

Applying KCL at Node 2,

  

V V V V

V V

2 1V VV 2 2V V

1 2V V

4 2

50 90

2
0

1

4

1

4

1

2

1

2
25 90

0

+ +
− ∠50 °

=

− VVV
−

⎛
⎝⎝⎝

⎞
⎠⎠⎠

= ∠25 °

−

j

j

.. ( . . )25 0 2) 5 902)1 (V ( 75 0 ) 2. )1 ( .7. 5 0 )( 75( 7. 5 25 °j

  

…(ii)

Writing Eqs (i) and (ii) in matrix form,

0 45 0 5 0 25

0 25 0 75 0 5

10 0

25 90
1

2

. .45 0 .

. .25 0

0 5

− +0 25 0 75.25 0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0

∠ °90

⎡
⎣

j

j

V1

V2
⎢⎢
⎡⎡⎡⎡
⎣⎣⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

 

By Cramer’s rule,

V1VV

10 0 0 25

25 0 75 0 5

0 45 0 5 0 25

0 25 0 75 0 5

24 7=

∠ °0

0 5

− +0 25 0 75

=

.

.0

.0.45 .

. .25 025 0

.
j j25 0 75.75

j

j

∠ °∠∠7 . 5 V

V2V

0 45 0 5 10 0

0 25 25 90

0 45 0 5 0 25

0 25 0 75 0 5

3=

0 5 10 °
−0 25 25 °

0 5

− +0 25 0 75

=

.00.45

.0.45 .

. .25 025 0

j

j

j

4 344 4 8. .34 5∠ °52 8252 V



6.3 Node Analysis 6.11

 Example 6.13   Find the voltage V
AB

 in the network of Fig. 6.13.

I = 10∠0° A

2 Ω 2

1

3 Ω

j5 Ω

j4 Ω

j10 ΩA

B

I

Fig. 6.13

Solution Applying KCL at Node 1,

10 0
2 3 4

1

2

1

3 4

1

2
10 0

62 0

1 2 1

1 2
2

∠ °0 = +
+

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2 ∠ °0

V V1 2 V1

V V
1

1 22

j

j

j( .0 . )16 V VVV1 2V VVVV 0 10 0=V2V ∠ °0

  

…(i)

Applying KCL at Node 2,

V V V V

V V

2 1V VV 2 2V V

1 2V V

2 5 10
0

1

2

1

2

1 1

10
0

0 0 5

+ +2 =

− VVV
⎛
⎝⎝⎝

⎞
⎠⎠⎠

=

−0 −

j j5

j j5

. (V1V5 +V1VV5 jj0 02. )3 V2 =

  

…(ii)

Writing Eqs (i) and (ii) in matrix form, 

0 62 0 16 0 5

0 5 0 5 0 3

10 0

0
1

2

. .62 0

. .5 0

−0 16

− −0 5 0 5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j

j

V1

V2

By Cramer’s rule,

     V1VV

10 0 0 5

0 0 5 0 3

0 62 0 16 0 5

0 5 0 5 0 3

21 8 56 42=

∠ °0

−0 16

− −0 5 0 5

= 21 8

.

.0.5

.0.62

. .5 0

. .8 568
j

j

j

°° V  

V2VV

0 62 0 16 10 0

0 5 0

0 62 0 16 0 5

0 5 0 5 0 3

18 7 87=

∠0 16 10 °
−

−0 16

− −0 5 0 5

= 18 7

.00.62

.0.62

. .5 0

. .7 877

j

j

j

4244

18 7 42

°

=2 ∠ °87 42

V

VV V2= 2AV . .7 8787

 

V
V

BV
j j

= =
∠ °

°1VV

3 4j+
21 8∠

3 4j+
1= 7 45 9∠ 3 32( )j4

. .8 5∠ 6
( )j4 . .45 9∠ 3  V

V V VABV A BV VVAV = ∠ ∠ °( . . )° ( . . )° .∠.7 8∠ 7. −)° ( 4. 5 9∠ 3. 2=)° 23 34 1  ° V



6.12 Network Analysis and Synthesis

 Example 6.14  Find the node voltages V
1
 and V

2
 in the network of Fig. 6.14.

2∠30° A

V1 V2

2V22 Ω

−j− 1 Ω

j2 Ω

Fig. 6.14

Solution Applying KCL at Node 1,

V V V
V

V V

1 1V VV V 2VV
2VV

1 2V VV V

2 1
2

1

2

1

1
2

1

1
0

+
−

=

+
−

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝

⎞
⎠⎠⎠

=

j

j
1

j1⎠⎠⎠ ⎝⎝⎝

 

( . ) ( )5. 1 2) ( 1 0) 2)+ j j) ((j1)1) 2))2( 1)1)1)j2((2( +   …(i)

Applying KCL at Node 2,
V V V

V V

2 1V VV V 2VV

1 2V VV V

1 2
2 30

1

1

1

1

1

2
2 30

−
+ =2 ∠ °30

⎛
⎝

⎞
⎠⎠⎠

= 2 °

j j1

j j
1

1 −⎝⎝⎝ j

                 − ∠ °j j1 0 5 2= 302j 0j+ 5 2j 0j+ 5   …(ii)

Writing Eqs (i) and (ii) in matrix form,

0 2 1

1 0 5

0

2 30
1

2

. (5 1 )

.−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
∠ °30

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j2(11 +
j j1

V1

V2

 

By Cramer’s rule,

          

V

V

1VV

2VV

0

2 30 0 5

0 2 1

1 0 5

2 46 130 62

0

=
∠ °30

−

= ∠2 46 °

=

( )2 1+2

.

. (5 1+ )

.

. .6 130∠46
j

j j2 +(1 −1

j j1

V

..

. ( )

.

. .

5 1 0

1 2 30

0. 2( 1

1 0 5

1 23 167 49
− ∠1 2 °

−

∠= .1 2. 3 °

j

j

j j(2( +
j j1

V

 

 Example 6.15  In the network of Fig 6.15, fi nd the voltage V
2
 which results in zero current through 

4 W  resistor.

50∠0° V

5 Ω 4 Ω 2 Ω

−j− 2 Ωj2 Ω
+

−

+

−

V1 V3

V2

Fig. 6.15



6.3 Node Analysis 6.13

Solution Applying KCL at Node 1,

5 2 4
0

1

5

1

2

1

4

1

4
10

+ +

+ + = ∠ °0
j

       4. 5 0 0= ∠10 °  …(i)

Applying KCL at Node 3,

V

V

2

4 2 2
0

1

4

1

4

1 1
0 5

+ +

− j

5= 0 V   …(ii)

Writing Eqs (i) and (ii) in matrix form,

5 0 25 101.

− +
⎡ ⎤ ∠ °0

j

V
 

By Cramer’s rule,

V1

10 25

0 75 0 5

5 0 25

0 5

10

0

− +

.

j

.

7. 0 125

. 5

5

.

°

0 5 10

V

V
V

5 0 5 0 25

0 5

0 5

0 55 1.

5 2

− +.

0

j

5

4
04

°

ΩI

10 7

5 1 5

5

0 55

0 2

°
.0 125 20.

15 95

0 25

+ 0

2− V

= 10V

5 5

5
2

)

V = = 26 V

 Example 6.16  Find the voltage across the capacitor in the network of Fig. 6.16.

12∠30 V

2∠60 A

V1 V2

j2 Ωj1 Ω 2 Ω

+

Fig. 6.16



6.14 Network Analysis and Synthesis

Solution Nodes 1 and 2 will form a supernode.

Writing the voltage equation for the supernode,

V V1 2V VV 12 30=V2VV ∠ °30   …(i)

Applying KCL to the supernode,

V V V1 2V VV V 2VV

1 2 2
2 60

j j1 2
+ +2 = 2 °

( ) ( . ) ∠ °j j) () ()) 0 2) = 602)j(((+ 5 0j+ )) 2. ).j( .(+ 0j+ ))   …(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1

1 0 5 0 5

12 30

2 60
1

2−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °30

∠ °60

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦j j1 0 51 0 5 .0j55

V1

V2

By Cramer’s rule,

V

V V

2VV

2V

1 12 30

1 2 60

1 1

1 0 5 0 5

18 157 42

18 5

=

∠ °30

− ∠1 2 °

−

= ∠18 55 °

=V2VV

j

j j1 0j1 0 51 0 5

cVV

.0j55

. .55 157∠55

.

V

55 57∠ °157 42.42 V

 

6.4    SUPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The 

superposition theorem states that in a network containing more than one voltage source or current source, 

the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced 

in that branch by each source acting separately. As each source is considered, all of the other sources are 

replaced by their internal impedances. This theorem is valid only for linear systems.

 Example 6.17  Find the current through the 3 + j4 ohm impedance.

3 Ω

50∠90° V 50∠0° V

5 Ω j5 Ω

j4 Ω

−

+−

+

Fig. 6.17

Solution 

Step I When the 50 ∠90° V source is acting alone (Fig. 6.18)

ZT
j

= + = °5
3 9j+

6 35 2∠ 3 2
( )j3 4j+ ( )j5

. .35 2∠ 3 Ω

IT =
∠ °
∠ °

= °
50 90

6 35∠ 2
7 87 6∠ 6 8

. .35 2∠ 3
. .87 6∠ 6  A

3 Ω

50∠90° V

5 Ω j5 Ω

j4 Ω

I′

−

+

Fig. 6.18



6.4 Superposition Theorem 6.15

By current division rule,

′ =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ° ↓I ( . . )° . ( )↓8. 7 6∠ 6.
5

3 9+
4 15 8∠∠ 5 3.

j

j

Step II When the 50∠0° V source is acting alone (Fig. 6.19)

ZT j
j

= +j = °5
5

8 4j+
6 74 6∠ 8 2

( )j+3 4
. .74 6∠ 8 Ω

  IT =
∠ °
∠ °

= − °
50 0

6 74∠ 2
7 42 6∠− 8 2

. .74 6∠ 8
. .42 6∠ 8 A  

By current division rule,

   
I″ =

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= − ° ↑ °( . . )° . ( )↑ . . (4. 2 6∠− 8.
5

8 4+
4 15 9∠−∠ 4 7. 7 4° ( ) 3

j
A  ∠ °(↑ . ∠4=( )↑ 15 A ↓↓)

 

Step III By superposition theorem,

        I = I′ + I′′ = 4.15 ∠85.3° + 4.15 ∠85.3° = 8.31 ∠85.3°A (↓)

 Example 6.18  Determine the voltage across the (2 + j5) ohm impedance for the network shown in 

Fig.6.20.

50∠0° V 20∠30° A

j4 Ω

j5 Ω

−j− 3 Ω

2 Ω

−

+

Fig. 6.20

Solution

Step I When the 50∠0° V source is acting alone (Fig. 6.21)

I =
∠ °

= − °
50 0

2 4+ 5
5 42 7∠ − 7 47

j j+4
. .42 7∠ 7 A

Voltage cross (2 + j5) Ω impedance

     V′ =  (2 + j5) (5.42 ∠− 77.47°) = 29.16 ∠− 9.28° V

Step II When the 20∠30° A source is acting alone (Fig. 6.22)

By current division rule,

I =
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °( )∠ °
4

2 9+
8 6. 8 4∠∠ 2 5. 3

j

j
A

Voltage across (2 + j5) Ω impedance

   V′′ =  (2 + j5) (8.68 ∠42.53°) = 46.69 ∠110.72° V

3 Ω

50∠0° V

5 Ω j5 Ω

j4 Ω

I″

−

+

Fig. 6.19

50∠0° V

j4 Ω

j5 ΩI

−j− 3 Ω

2 Ω

−

+

Fig. 6.21

20∠30° A

j4 Ω

j5 Ω

−j− 3 Ω

I

2 Ω

Fig. 6.22



6.16 Network Analysis and Synthesis

Step III By superposition theorem,

 V = V′ + V′′ = 29.16 ∠−9.28° + 46.69 ∠110.72° = 40.85 ∠72.53° V

 Example 6.19   Determine the voltage V
AB

  for the network shown in Fig. 6.23.

50∠0° V

4∠0° A

j5 Ω

−j− 2 Ω

5 Ω

A

B

+

−

Fig. 6.23

Solution

Step I When the 50∠0° V source is acting alone (Fig. 6.24)

50∠0° V

j5 Ω

−j− 2 Ω

5 Ω

A

B

+

−

Fig. 6.24

VABV
′ = ∠ °50 0  ° V  

Step II When the 4∠0° A source is acting alone (Fig. 6.25)

4∠0° A

j5 Ω

−j− 2 Ω

5 Ω

A

B

Fig. 6.25

VABV
″ = 0

Step III By superposition theorem,

       V V VABV ABV ABV+VABV = ° ∠ °′ ″ ° +50 0∠∠ 0 0= 5= 0 V°  
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 Example 6.20  Find the current I in the network shown in Fig. 6.26.

13 ∠25° V 20 ∠−30° V3 ∠50° A

j3 Ω −j− 5 Ω4 Ω 2 ΩI

+

−

+

−

Fig. 6.26

Solution   Step I When the 13∠25° V source is acting alone (Fig. 6.27)

13 ∠25° V

j3 Ω −j− 5 Ω4 Ω 2 Ω

+

− I′

Fig. 6.27

I′ =
∠ °

= ∠ °
13 25

6 2−
2 0 43 43

j
. .∠057 43 ( )→  Step II When the 20∠−30° V source is acting alone (Fig. 6.28)

20 ∠−30° V

j3 Ω −j− 5 Ω4 Ω 2 Ω

+

−
I″

 

Fig. 6.28

′′ =
∠ − °

= − ° ∠ °I
20 30

6 2−
3 16 1∠ − 1 5 3=7° 16 3

 V
A A( )→

j
. .6 1∠ 1 ( )←( )← . .∠16 68

 

Step III When the 3∠50° A source is acting alone (Fig. 6.29)

3 ∠50° A

j3 Ω −j− 5 Ω4 Ω 2 ΩI′′′

Fig. 6.29
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By current division rule,

 
′′′ = ° × = ° = ∠ − °I 3 5∠ 0

2 5−
6 2−

2 56 0∠ 23 2 56 179 77
j

j
. .56 0∠ ( )← . .∠56 179 A( )→

 

Step IV By superposition theorem,

   I = I′ + I′′ + I′′′   = 2.057 ∠43.13° + 3.16 ∠168.43° + 2.56 ∠−179.77° A  = 4.62 ∠153.99° A (→)

 Example 6.21  Find the current through the j3 W  reactance in the network of Fig 6.30.

10∠60° V5∠30° V j5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

+

−

Fig. 6.30

Solution 

Step I When the 5∠30° V source is acting alone (Fig. 6.31)

5∠30° V j5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

Fig. 6.31

When a short circuit is placed across j15 Ω reactance, it gets shorted as shown in Fig 6.32.

5∠30° V

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

I′

Fig. 6.32

I′ =
∠ °

−
= °

5 3∠ 0

5 3
2

j j5 +
. ∠ °5 120 ( )←
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Step II When the 10∠60° V source is acting alone (Fig. 6.33)

10∠60° Vj5 Ω

j3 Ω

−j− 5 Ω

−j− 2 Ω
+

−

Fig. 6.33

When a short circuit is placed across the −j2 Ω reactance, it gets shorted as shown in Fig. 6.34

10∠60° Vj5 Ω

j3 Ω

−j− 5 Ω

+

−

I′′

Fig. 6.34

I″ =
∠ °

−
= ∠ ° → ∠ − ° ←

10 60

5 3
5 150 30

j j5 +
A ( ) 5= A ( )

 

Step III By superposition theorem,

I I I= +I = ∠ ° + ° °′ ″I+ 2 5 120 5 3∠− 0 3° = 1 6∠−. .∠ +5 120 5 3∠ 0 3 . °21 ( )←  

 Example 6.22  Find the current I
0
 in the network of Fig. 6.35.

10∠30° A

2∠0° A

j4 Ω

6 Ω

8 Ω

−j− 2 Ω

+

−

I0

Fig. 6.35

Solution

Step I When the 10∠30° V source is acting alone (Fig. 6.36)

Z

I

T

T

j

j j
= + = ° Ω

=
∠ °
∠ °

=

6
4

4 8 2
8 64 2∠ 4 12

10 30

8 64∠
1 16

( )j8 2
. .64 2∠ 4

. .64 2∠
. ∠ °∠∠5. A°88

10∠30° Vj4 Ω

6 Ω

8 Ω

−j− 2 Ω

+

−

I0
′

IT

Fig. 6.36
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By current division rule,

I0 1 16 5 88
4

8 2 4
0 56 81 84′ = 1 16 ° × = 0 56 ° ↓. .6 516 . .56 8156

j

j j2 +2
( )  

Step II When the 2∠0° A source is acting alone (Fig. 6.37)

2∠0° A

j4 Ω

6 Ω

8 Ω

−j− 2 Ω

I0
′′

Fig. 6.37

The network can be redrawn as shown in Fig. 6.38.

2∠0° Aj4 Ω8 Ω 6 Ω

(a)

−j− 2 Ω

I0
′′

(b)

2∠0° A8 Ω

(1.85 + j2.77) Ω

−j− 2 Ω

I0
′′

 

Fig. 6.38

By current division rule,

I0 2 0
1 85 2 77

1 85 2 77 8 2
0 6 51 83″ = 2 ° × = ∠0 67 ° ↓

.2.85

.85
. .67 5167

j

j j2 77 8+2 77.22
( )

Step III By superposition theorem,

I I I0 0 0 0 56 81 84 0 67 83 1 19 65 46+I0I = 0 56 ° ∠ °51 83 = 1 19 ° ↓′ ″I+ . .56 8156 . .67 5∠51 . .9 6519 ( )

 Example 6.23  Find the current through the j5 W branch for the network shown in Fig. 6.39.

j5 Ω −j− 4 Ω3 Ω

10 ∠0° V 15 ∠90° V 20 ∠0° V

+

−

+

−

+

−

Fig. 6.39
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Solution

Step I When the 10∠0° V source is acting alone (Fig. 6.40)

j5 Ω −j− 4 Ω3 Ω

10 ∠0° V

+

−

I′

Fig. 6.40

Z

I

T j
j

= +j = ° Ω

=
∠ °

∠ °
=

5
3

3 4j−
4 04 6∠ 1 66

10 0

4 04∠ 66
2 48 6∠ − 1

( )j4j−
. .04 6∠ 1

. .04 6∠ 1
. .8 6∠ 1′ 6666 ° →A ( )

 

Step II When the 15∠90° V source is acting alone (Fig. 6.41)

Z

I

T

T

j j
= + = ∠− ° Ω

=
∠ °

∠ − °
=

3
5 4j

20 22 81 47

15 90

20 22 81 47
0

( )j5 ( )j4j
. .∠ 81

. .∠22 81
.. .74 171 47∠ °.171 47 A

By current division rule,

  

    

I″ == ∠ ×
−

−
= ← ∠= →0 171 47

4

4 5
8∠ 53 171. .∠7 171 . .96 8∠ . (°47 )

j

j j4 +
A ( ) 2 96

Step III When the 20 ∠0° V source is acting along (Fig. 6.42)

j5 Ω −j− 4 Ω3 Ω

20 ∠0° V

+

−

I′′′ IT

Fig. 6.42

Z

I

T

T

j
j

= − + = ∠− ° Ω

=
∠ °

∠ °
=

4
3

3 5j+
3 4 5∠− 0 51

20 0

3 47 5∠− 0 51
5 6 5∠ 0

( )j5j
. .7 5∠ 0

. .47 5∠ 0
.76 5∠ 0.51.. ° A

By current division rule,

I″′ = ° × = − ° ← ∠= →5 6 5∠ 0 51
3

3 5+
2 96 8∠− 53 171. .76 5∠ 0 . .96 8∠ . (°47 )

j
A ( ) 2 96

 

j5 Ω −j− 4 Ω3 Ω

15 ∠90° V
+

−

I′′

IT

Fig. 6.41
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Step IV By superposition theorem,

I I I I= +I + =I ° ∠ ° + ∠ ° =′ ″I+ ″′ 2 48 6∠− 1 66 2° + 96 7 2 96 171 47 4 8. .48 6∠ 1 . .∠96 7 . .∠96 171 . 686 1∠− 6466 41. ° A

 Example 6.24  Find the voltage drop across the capacitor for the network shown in Fig. 6.43.

2 Ω

4 Ω

2 Ω

10 ∠0° V

20 ∠45° V

−j− 2 Ω

+ + −

−

j5 Ω

Fig. 6.43

Solution

Step I  When the 10∠0° V source is acting alone 

(Fig. 6.44)

   

Z

I

T

T

j j
= +

= ∠ − ° Ω

=
∠ °

∠ °
= ∠

4
2 5j+ j 2 2j

7 5∠ − 91

10 0

7 5∠ − 91
1 43

( )j2 5j+ j ( )j2 2j

.

.
. ∠3 5 955 1° A

By current division rule,

I′ = ∠
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ° →( . . )°4. 3 5∠
2 5+

2 5+ 2 2
1 5. 4 3∠∠ 7 2. 4

j

j j+5 2 −
A ( )

Step II When the 20∠45° V source is acting alone (Fig. 6.45)

2 Ω

4 Ω

2 Ω
20 ∠45° V

−j− 2 Ω

+ −

j5 Ω

I′′

Fig. 6.45

Z

I

T
j

= +
+

= − ° Ω

=
∠ °

°
=

( )j
( )j+

. .

. .

j−
4(

4 2+ 5
4 48 8∠ −∠ 84

20 5

4 4. 8 8∠ −∠ 84
′′ 4 444 6 8. .46 53∠ °53 8453 ←A ( ) A4 46 53 84. .46 53− ∠4 46.46 ° ( )→

2 Ω

4 Ω

2 Ω

10 ∠0° V

−j− 2 Ω

+

−

j5 Ω

I′

Fig. 6.44
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Step III By superposition theorem,

         I I I

V I

= +I = ∠ ° = ∠ − °′ ″I+ 1 54 3∠ 7 24 4− 46 53 84 3 01 117 78. .54 3∠ 7 . .∠46 53 . .∠01 117

( )2 (

A

cVV j jI = −) ( 2 322 01 117 78 02 5) ( . .01 117 ) .6 .∠ − °) ∠ °152 22. V

 

 Example 6.25  Find the node voltage V
2
  in the network of Fig. 6.46.

5 ∠0° V

5 ∠30° V

10 ∠0° A 5 Ω 2 Ω j10 Ω

V1 V2

Fig. 6.46

Solution

Step I When the 10 0∠ °0  A  source is acting alone (Fig. 6.47)

5 ∠30° V

10 ∠0° A 5 Ω 2 Ω j10 Ω

V1
′ V2

′

Fig. 6.47

Applying KCL at Node 1,

V V V

V V

1 1V VV V 2VV

1 2V VV V

5 5 30
10 0

1

5

1

5 30

11

5 30
10 0

′ ′ ′

′ ′1

+
−

∠ °30
= ∠10 °

+
∠ °30

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠ °30

= ∠10 °
 

( . ) ( . )3. 7 0 ) ( 1 0 10 02) =2 ∠ °0j j. ) (0 ) 1 (0 ) 2. )0. V)( 17 0 )0 2)0j( 171 ( .( 17′ ′   …(i)

Applying KCL at Node 2,

V V V V

V V

2 1V VV V 2 2V VV V

1VV

5 30 2 10
0

1

5 30

1

5 30

1

2

1

10

′ ′ ′ ′

′

∠ °30
+ +2 =

−
∠ °30 ∠ °30

⎛
⎝⎝⎝

⎞
⎠⎠⎠

j

j
22VVVV 0′ =

− =( . ) ( . )1. 7 0− ) ( 67 0 02)j j. ) (0 ) 1 ( V)( 67 0 2. )0.j+ ( 671 −( .+ ( 67′ ′   …(ii)
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Writing Eqs (i) and (ii) in matrix form,

0 37 0 1 17 0

17 0 0 67 0 2
1

2

.37 (0 . )1

( .0(0 )1 .017−(0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤j j0 1 17.0 ( .00 1 −
j j0 0 67. )1 .67 −

V1

V2

′

′
⎦⎦
⎥
⎤⎤

⎦⎦⎦⎦
= ∠ °⎡

⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

10 0

0
  

By Cramer’s rule,

      V2VV

0 37 0 1 10 0

17 0 0

0 37 0 1 17 0

17

′ =

0 1 10 °
17−

−

. .37 00

( .0(00 . )1

.37 (0 . )1

( .0

j

j

j j0 1 170 1 −.0 ( .0

−−−

= − °

j j0 0 67 0j− 2

8 57 3∠− 36

)1 .j0j

. .57 3∠ V  

Step II When the 5 0∠ °0 A  source is acting alone (Fig. 6.48)

5 ∠0° A

5 ∠30° V

5 Ω 2 Ω j10 Ω

V2
′′

Fig. 6.48

V V V

V

V

2 2V VV V 2VV

2V

2VV

5 30 5 2 10
5 0

61 11 5V2V 0

8 2

″ ′′ ″

″

″

∠ °30
+ +2 = 5 °

V2VV ∠ °0

= 8

j

( .0 . )93°

. 12∠2 111 93. ° V

Step III By superposition theorem,

V V V2 2V V 2V 8 57 3 36 8 2 11 93 16 62+V2V = 8 57 − °3 36 + ∠8 2 ° = ∠ °4 12′ ″ . .57 357 . .11∠2 . .62∠4  V  

 Example 6.26  Find current through inductor in the network of Fig. 6.49.

2∠0° A

8∠135° V

2∠90° A

−j− 1 Ωj2 Ω

− +

2 Ω

Fig. 6.49

Solution

Step I When the 8 135∠ °135  V  source is acting alone (Fig. 6.50)

Applying KVL to the mesh,

   
8 35 2 0

8 135

1
8 45 8 135

∠ °135 − ′ ′ =

′ =
∠ °135

= 8 ° ∠8 − °135

( )1−

( )← (

j j)1

j

I2

I A →→)

8∠135° V

−j− 1 Ωj2 Ω

− +

2 Ω

I′

Fig. 6.50
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Step II When the 2 0∠ °0  A  source is acting alone (Fig. 6.51)

2∠0° A

−j− 1 Ωj2 Ω

2 Ω

Fig. 6.51

The network can be redrawn as shown in Fig. 6.52.

By current division rule,

′′ = °
−

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °
−⎛

⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠ ° →I 2 0∠
1

1 2
2 0∠

1

1
2 180

j

j j1+
j

j
A( )

Step III When the 2 90∠ °90 A  source is acting alone (Fig. 6.53)

2∠90° A

−j− 1 Ωj2 Ω

2 Ω

Fig. 6.53

The network can be redrawn as shown in Fig. 6.54.

By current division rule,

′′′ = °
−

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= − ° °I 2 9∠ 0
1

1 2
2 9∠ − 20° 90

j

j j1+
A∠ °2=A ( )←←( )← ( )→

Step III By superposition theorem,

I I I I′ + ′′ ′′′ = ∠− + ∠ + ∠−8 135 2 80 2 9∠ 0 8= 49 154 47° °+ ∠2 180 ° °∠8= 49 154 47. .∠49 154 A

 Example 6.27  Determine the source voltage V
S
  so that the current through 2 W  resistor is zero in 

the network of Fig. 6.55.

20∠90° V

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−

+

−
Vs

Fig. 6.55

2∠0° A 2 Ω

−j− 1 Ω

j2 Ω

I′′

Fig. 6.52

2∠90° A2 Ω

j2 Ω

−j− 1 Ω

I′′′

Fig. 6.54



6.26 Network Analysis and Synthesis

Solution

Step I When the voltage source V
s
 is acting alone (Fig. 6.56)

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−
Vs

I1
′ I2

′ I3
′

Fig. 6.56

Appling KVL to Mesh 1,

V IsV j =3 3I jI 01 j3j−′ ′ ′( )I II1I 2  

( ) 3 23 =j j) 1) sI I33j1 −1 Vs
′ ′   …(i)

Appling KVL to Mesh 2,

− j j3 2− 0=3j3( ) ( )−2 3− I j+ 3j+ 3′ ′ ′ ′ ′  

         − j j+3 2 3 0=3I2++′ ′ ′   …(ii)

Appling KVL to Mesh 3,

      − =j3 4− 03( )3 2− I
′ ′ ′  

        j3 03
′ ′( )j( )4 3j3j4 3j3   …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

1

2

3

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

′

′

′

⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎢⎢

⎢⎣⎣
⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎥⎥

⎥⎦⎦
⎥⎥

=
⎡

⎣

⎢
⎡⎡j j3 −3

j j3 2

j j3 4

s
I

I

I

Vs

⎢⎢
⎣⎣⎣⎣

⎢⎢⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥  

By Cramer’s rule,

I

V

V
2

3 3 0

3 0 3

0 0 4 3

3 3 3 0

3 2 3

0 3 4 3

′ =

−

−

=

j

j j3 0

j

j j3 −3

j j3 2

j j3 4

sV

sV( )9 12j

Δ
 

Step II When the 20 ∠90° V source is acting alone (Fig. 6.57)

3 Ω 2 Ω 4 Ω

−j− 3 Ωj3 Ω
+

−I1
′′ I2

′′ I3
′′

20∠90° V

Fig. 6.57

Applying KVL to Mesh 1,

   − =3 3 01 333−″ ″ ″j ( )−1 2I I  

         ( ) 3 023j j) 1) I 33j1 −1
″ ″   …(i)
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Applying KVL to Mesh 2,

  − j j3 2− 0=3j3( ) ( )−2 3− I j+ 3j+ 3″ ″ ″ ″ ″  

       − j j+3 2 3 0=3I2++″ ″ ″   …(ii)

Applying KVL to Mesh 3,

     j3 4 20 90 03( )3 2 I
″ ″ ″ − ∠20 ° =  

j3 20 903
″ ″ ∠ °90( )j4 3j3j4 3j3    …(iii)

Writing Eqs (i), (ii) and (iii) in matrix form,

3 3 3 0

3 2 3

0 3 4 3

0

0

20 90

1

2

3

−
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎢⎢

⎢
⎣⎣

⎢⎢

⎤

⎦

⎥
⎤⎤

⎥
⎥⎥

⎥
⎦⎦

⎥⎥ =
− ∠20 °

j j3 −3

j j3 2

j j3 4

I

I

I

″

″

″

⎡⎡

⎣

⎢
⎡⎡⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥

By Cramer’s rule,

I2

3 3 0 0

3 0 3

0 20 90 4 3

3 3 3 0

3 2 3

0 3 4 3

180 18″ =

−
20 ° −4

−

=
− −180

j

j j3 0

j

j j3 −3

j j3 2

j j3 4

j 00

Δ

Step III By superposition theorem,

I I I2 2 2 0

0

+ =I I2I 2 =

=

′ ″ ( )9 12 ( )180 180

( )9 12 ( )180 180

j j+)1 )1212 ( 180− −180

j j+)1 )1212 ( 180− −180

V

V

Δ

( )((

.

180 180

16 9 8 1. 3= ∠.16 97 − °8 13

j j) 180=) +

s

V

Vs V

6.5    THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network 

can be replaced by a voltage source V
Th

 in series with an impedance Z
Th

. 

 Example 6.28  Obtain Thevenin’s equivalent network for the terminals A and B in Fig. 6.58.

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5 

j6 Ω

+

−

A

B

50∠0° V

Fig. 6.58
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Solution

Step I Calculation of V
Th

 (Fig. 6.59)

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5

j6 Ω

+
+

−

−
I

VTh

A

B

50∠0° V

Fig. 6.59

Applying KVL to the mesh,

 50 ∠0° − (3 − j4) I − (4 + j6) I = 0

     
I =

∠ °
= − °

50 0
6 87 1∠ − 5 95

( )3 4− ( )4 6
. .87 1∠ 5

j j+)4 (4 +
A

 

 V
Th

 = (4 + j6) I  = (4 + j6) (6.87 ∠−15.95°) = 49.5 ∠40.35° V

Step II Calculation of Z
Th

 (Fig. 6.60)

ZTh = + = − °( )
( )( )

( ) ( )
.

j j)(

j j+) (
−

− +
− +

4 8. 3 1∠ −∠ 13 Ω  

3 Ω

4 Ω

−j− 4 Ω −j− 4 Ωj5 

j6 Ω

ZTh

A

B

Fig. 6.60

Step III Thevenin’s Equivalent Network (Fig. 6.61)

+

−

A

B

4.83 ∠−1.13° Ω

49.5 ∠40.35° V

Fig. 6.61

 Example 6.29  Find Thevenin’s equivalent network for Fig. 6.62.

5 Ω

5 Ω3 Ω

−j− 2 Ω j5 Ω
A

B

10 ∠30° V

+

−

Fig. 6.62



6.5 Thevenin’s Theorem 6.29

Solution

Step I Calculation of V
Th

 (Fig. 6.63)

5 Ω

5 Ω3 Ω

−j− 2 Ω j5 Ω
A

B

I1 I2

10 ∠30° V

+
+

−
−

VTh

Fig. 6.63

Applying KVL to Mesh 1,

10 ∠30° − (5 − j2) I
1
 − 3(I

 1
 − I

2
) = 0

              (8 − j2) I
1
 − 3I

2
 = 10 ∠30° …(i)

Applying KVL to Mesh 2,

       −3 (I
2
 − I

1
) − j5 I

2
 − 5 I

2 
= 0

               −3I
1
 + (8 + j5) I

2
 = 0 …(ii)

Writing Eqs (i) and (ii) in matrix form;

             
8 2 3

3 8 5

10 30

0
1

2

−2

− +3 8

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °30⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j

j

I

I

By Cramer’s rule,

I

V I

2

2

8 2 10 30

3 0

8 2 3

3 8 5

0 433 9 7

5I2 433 9

=

∠2 10 °
−

−2

− +3 8

= ∠0 433 °

I2 ∠

j

j

j

. .33 9∠433

( .0

 A

ThVV .. ) .7 ) 16 9 7.°)) ∠ °9 7. V

Step II Calculation of Z
Th

 (Fig. 6.64)

ZTh =
+

⎧
⎨
⎧⎧

⎩
⎨⎨

⎫
⎬
⎫⎫

⎭
⎬⎬ +

⎡

⎣
⎢
⎡⎡

⎣⎣

⎤

⎦
⎥
⎤⎤

⎦⎦
= =

( )

[ . . ] ( .

− 3

5 2− 3
5 5⎥

9. 4 0− 5] 9.

j
j

j j. +0

 

 4 444 5

94 4 5

6 94 4 735
3 04 33 4= = 3 04 °

j

j

j

. )735

( .1 . )735

.4.94 j
. .04 3304

 

Ω

Step III Thevenin’s equivalent Network (Fig. 6.65)

+

−

A

B

3.04 ∠33.4° Ω

2.16 ∠9.7° V

 

Fig. 6.65

3 Ω 5 Ω5 Ω

−j− 2 Ω j5 Ω
A

B

ZTh

Fig. 6.64
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 Example 6.30  Obtain Thevenin’s equivalent network for Fig. 6.66.

4 Ω

2 Ω

−j− 4 Ωj6 Ω

A

B

10 ∠0° V

5 ∠90° V
+ + −

−

Fig. 6.66

Solution

Step I Calculation of V
Th

4 Ω

2 Ω

−j− 4 ΩIj6 Ω

A

B

10 ∠0° V

5 ∠90° V

+

+

−

+ +

−

−

− VTh

Fig. 6.67

Applying KVL to the mesh,

( ) 5) 90 0∠5 ° =

                            
I =

∠ °
= °

5 9∠ 0

2 2+
1 77 4∠ 5

j
.  77 4∠ 5 A

 

          V
Th

 = (−j4) I + 5 ∠90° − 10 ∠ 0° = (4 ∠−90°) (1.77 ∠45°) + 5 ∠90° − 10 ∠0°  = 18 ∠146.31° V

Step II Calculation of Z
Th

 (Fig. 6.67)

4 Ω

2 Ω

−j− 4 Ω
j6 Ω

A

B

ZTh

Fig. 6.68

ZTh = + = − °4
2 2+

11 3 4∠− 4 93
( )2 6+ ( )4

. .3 4∠ 4
j j)6 (−

j
Ω

Step III Thevenin’s Equivalent Network 

+

−

A

B

11.3 ∠−44.93° Ω

18 ∠146.31° V

Fig. 6.69



6.5 Thevenin’s Theorem 6.31

 Example 6.31  Obtain Thevenin’s equivalent network for Fig. 6.70.

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

10 ∠0° A

Fig. 6.70

Solution

Step I Calculation of V
Th

 (Fig. 6.71)

By current division rule,

I = = ∠ °
( )∠ ° ( )

. .∠
)° (

5 5− 15
13 42 26 57

j j+5
A

  V
Th 

= (−j5) I

       = (5 ∠−90°) (13.42 ∠26.57°) = 67.08 ∠−63.43° V

Step II Calculation of Z
Th

 (Fig. 6.72)

     ZTh =
−

= − °
( )− ( )j j)( +

j j+
)()(

5 5+ 15
7 0. 7 8∠ −∠ 1 8. 6 Ω

Step III Thevenin’s Equivalent Network 

+

−

A

B

7.07 ∠−81.86° Ω

67.08 ∠−63.43° V

Fig. 6.73

 Example 6.32  Obtain Thevenin’s equivalent network for Fig. 6.74.

21 Ω 50 Ω

30 Ω12 Ω

j24 Ω j60 Ω

A B20 ∠0° V

+

−

Fig. 6.74

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

10 ∠0° A

I

+

−

VTh

Fig. 6.71

2 Ω

3 Ω −j− 5 Ω

j15 Ω

A

B

ZTh

Fig. 6.72
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Solution

Step I Calculation of V
Th

 (Fig 6.75)

21 Ω 50 Ω

30 Ω12 Ω

j24 Ω j60 Ω

A B
20 ∠0° V

+
+ −

−

I1 I2

VTh

Fig. 6.75

I1

20 0

21 12 24
0 49 36 02=

∠ °0

+ +12
= 0 49 − °36 02

j
. .9 3649  A

I2

20 0

80 60
0 2 36 86=

∠ °0

+
= ∠0 2 − °36 86

j
. .36∠2  A

 V
Th 

= (12 + j24) I
1
 − (30 + j60) I

 2
  

          = (26.83 ∠63.43°) (0.49 ∠−36.02°) − (67.08 ∠63.43°) (0.2 ∠−36.86°)

  = 0.33 ∠171.12° V

Step II Calculation of Z
Th

 (Fig. 6.76)

21 Ω

12 Ω j24 Ω

50 Ω

30 Ω j60 Ω

A B

Fig. 6.76

ZTh =
+

+
+

= °
21

33 24

50

80 60
47 4 2∠ 6 8

( )+12 24 ( )+30 60
. .4 2∠ 6

j j
Ω

Step III Thevenin’s Equivalent Network

+

−

A

B

47.4 ∠26.8° Ω

0.33 ∠171.12° V

Fig. 6.77



6.5 Thevenin’s Theorem 6.33

 Example 6.33  Find Thevenin’s equivalent network across terminals A and B for Fig. 6.78.

j2 Ω

5 Ω1 Ω

A

B

2 ∠45° A

10 ∠90° V
−

+

Fig. 6.78

Solution

Step I Calculation of V
Th 

(Fig. 6.79)

j2 Ω

5 Ω1 Ω

A

B

2 ∠45° A

10 ∠90° V
−

+

+

−

VTh

Fig. 6.79

Applying KCL at the node,

V V

V

ThVV ThVV

ThVV

1 2

10 90

5
2 45

1

1 2

1

5
2 45 2 90

+
− ∠10 °

= ∠2 °

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠2 ° ∠ °90

j

j

 

( . ) .

.

5. 7 45 ) 7 67 5.

6 4. 9 112 5

°)) ∠ °67 5.

= ∠6 4. 9 °VThVV V
 

Step II Calculation of Z
Th

 (Fig. 6.80)

5 Ω

1 Ω

j2 Ω

A

B

ZTh

Fig. 6.80

    ZTh =
+

= °
5

5 1+ 2
1 77 4∠ 5

( )+1 2

j
Ω  



6.34 Network Analysis and Synthesis

Step III Thevenin’s Equivalent Network (Fig. 6.81)

+

−

A

B

1.77∠45° Ω

6.49 ∠112.5° V

Fig. 6.81

 Example 6.34  Find the current through the ( ) Ω  impedance in the network of Fig. 6.82.

j2 Ω

−j− 2 Ω

5 Ω

3 Ω 2 Ω

5 Ω

20 ∠0° V

20 ∠0° A
−

+

Fig. 6.82

Solution

Step I Calculation of V
Th

 (Fig. 6.83)

−j− 2 Ω

5 Ω

3 Ω 2 Ω

20 ∠0° V 20 ∠0° A

−

+
+

−

A

B

VTh

V1

I2

Fig. 6.83

Applying KCL at the node,

V V

V

1 1V VV V

1VV

20 0

5 2 2
20 0

1

5

1

2 2
20 0 4 0

∠20 °
+

−
= ∠20 °

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= ∠20 ° ∠ °0

j

j

0 51 05 24 0

47 06 29 05

47 06 29 05

. .51 9

. .06 29

. .06 29

∠ °29 0529 24 °
= ∠47 06.06 − °29 05

= ∠− °

V

V

V V=

1V

1VV

ThVV 1V

V

 VVV



6.5 Thevenin’s Theorem 6.35

Step II Calculation of Z
Th

 (Fig. 6.84)

−j− 2 Ω

5 Ω

3 Ω 2 Ω

A

B

ZTh

Fig. 6.84

ZTh = +
−

= − °3
5

5 2+ 2
4 79 1∠− 1 35

( )−2 2
. .79 1∠ 1

j
Ω  

Step III Calculation of I
L
 (Fig. 6.85)

+

−

A

B

4.79∠−11.35° Ω

47.06 ∠−29.05° V
IL j2 Ω

5 Ω

Fig. 6.85

IL
j

=
∠− °

° +
= − °

47 06 29 05

4 79 1∠− 1 35 5° + 2
4 73 3∠− 9 96

. .∠06 29

. .79 1∠ 1
. .73 3∠ 9 A  

 Example 6.35  Find the current through the 5 W  resistor in the network of Fig. 6.86.

5 Ω 4 Ω −j− 2 Ω

j5 Ω

4 ∠0° A6 ∠0° A

Fig. 6.86

Solution

Step I Calculation of V
Th

 (Fig. 6.87)

4 Ω −j− 2 Ω

j5 Ω

4 ∠0° A6 ∠0° A Vth

V1 V2

−

+ A

B

Fig. 6.87
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Applying KCL at Node 1,

V V V

V

1 1V VV V 2VV

1 2VV

4 5
6 0 0

1

4

1

5

1

5
6 0

+
−

+ 6 ° =

+
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

=2 −6 °

j

j
1

j5⎠⎠⎠ 2V2

( . )2. 5 0 0) 2 6 02 ∠ °0j j. )0 )0 ) 1.0 ) 0 2 2.0 21   …(i)

Applying KCL at Node 2,

V V V

V V

2 1V VV V 2VV

1 2V VV V

5 2
4 0

1

5

1

5

1

2
4 0

+ = 4 °

−
⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

⎛
⎝

⎞
⎠⎠⎠

= 4 °

j j5

j j
1

5⎠⎠⎠ ⎝⎝⎝ j

        j j0 2 0 3 4 02jV Vj0 3 2j 3j0 =2Vj0 3 2j0 3j0 ∠ °0   …(ii)

Writing Eqs (i) and (ii) in matrix form,

0 25 0 2 0 2

0 2 0 3

6 0

4 0
1

2

.25 .

.0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= −6 °
∠ °0

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j0 2.0

j j0 2.2

V1

V2

By Cramer’s rule,

V

V

1VV

6 0 0 2

4 0 0 3

0 25 0 2 0 2

0 2 0 3

20 8 126 87=

−6 °
∠ °0

= ∠20 8 − °126 87

j

j

j j0 2

j j0 2

.25 j0 .

.0j2

. .8 126∠8 V

ThVV hh V= = ∠− °V1V 20 8 126 87. .∠8 126

Step II Calculation of Z
Th

 (Fig. 6.88)

4 Ω −j− 2 Ω

j5 Ω

A

B

ZTh

Fig. 6.88

ZTh = = ∠ ° Ω
4

4 2− 5
2 4 53 13

( )2− 5

)
. .∠53

+2

j j+2

Step III Calculation of I
L
 (Fig. 6.89)

IL =
∠− °

∠ ° +
= ∠− °

20 8 126 87

2 4 13 5
3 1 143 47

. .∠8 126

. .∠4 53
. .∠ 143 Α +

−

A

B

2.4 ∠53.13° Ω

20.8 ∠−126.87° V
IL

5 Ω

Fig. 6.89



6.5 Thevenin’s Theorem 6.37

 Example 6.36  In the network of Fig. 6.90, fi nd the current through the 10 W resistor.

5 Ω

2 Ω

10 Ω
1 Ω

−j− 2 Ω

10 ∠0° V

5 ∠30° V

+
+

−

−

Fig. 6.90

Solution

Step I Calculation of V
Th

 (Fig. 6.91)

Applying KVL to the mesh,

j2 1 10 0 5 0

10 0

1 58 161 57

I I1 I

I

I

−I1 ∠ °0 =5I

=I ∠ °0

= ∠1 58 − °161 57

( )j2 66

. .58 161∠58 A

Writing V
Th

 equation,

5 10 0 5 0 0

5 58 161 10 0 5 30 0

I V10 0 5 30 0

V

V

1010 ° ∠ °3030 0 =
∠ − − ∠ °0 ∠5 ° − =

ThVV

ThVV

TVV

( .1 . )57°

hh V= ∠ − °5 32 110 06. .∠3 110

Step II Calculation of Z
Th

 (Fig. 6.92)

ZTh = +
−

= − °2
5

5 1+ 2
3 48 2∠ − 1 04

( )−1 2
. .8 2∠ 1

j
Ω

Step III Calculation of I
L
 (Fig. 6.93)

+

−

A

B

3.48 ∠−21.04° Ω

5.32 ∠−110.06° V
IL

10 Ω

Fig. 6.93

IL =
∠− °

°
= ∠− °

5 32 110 06

3 48 2∠− 1 04 1° + 0
0 4 104 67

. .∠32 110

. .48 2∠ 1
. .∠4 104  A

5 Ω

2 Ω

1 Ω

−j− 2 Ω

10 ∠0° V

5 ∠30° V

+
+

−

− +

−

A

B

VTh

I

Fig. 6.91

5 Ω

2 Ω

1 Ω

−j− 2 Ω

A

B

ZTh

Fig. 6.92
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 Example 6.37  Find the current through ( ) Ω  impedance in the network of Fig. 6.94.

2 Ω j5 Ω −j− 5 Ω
3 Ω

100 ∠0° V 50 ∠90° V

+

−

+

−
j6 Ω

4 Ω

Fig. 6.94

Solution

Step I Calculation of V
Th

 (Fig. 6.95)

2 Ω j5 Ω −j− 5 Ω
3 Ω

100 ∠0° V 50 ∠90° V

+

−

+

−

A

B
I

+

−
VTh

Fig. 6.95

Applying KVL to the mesh,

                         
100 0 2 5 3 5 50 90 0

22 36 26 57

∠ °0 2 − 50 °
= ∠22 36 − °26 57

I 5− I 5

I

j j5 335 I +
. .36 26∠36 A

 

Writing V
Th

 equation,

          

V I

V

V

ThVV

ThVV

ThVV

− ∠ ° =
− ∠− − ∠ ° =

=

3 5I +I 50 90 0

36 26 50 90 0

8

j I

( )3 5− j ( .22 . )°57

0 600 1 82 88. .61 82 ° V

 

Step II Calculation of Z
Th

 (Fig. 6.96)

2 Ω j5 Ω −j− 5 Ω
3 Ω

A

B

ZTh

Fig. 6.96

   ZTh = = °
( )( )

.
+

2 5+ 3 5
6 2. 8 9∠∠ 16

j j)( −
j j+5 3 −

Ω  



6.5 Thevenin’s Theorem 6.39

Step III Calculation of I
L
 (Fig. 6.97)

+

−

A

B

6.28∠9.16° Ω

80.61 ∠−82.88° V
IL j6 Ω

4 Ω

Fig. 6.97

IL
j

=
∠ − °

∠ ° +
= ∠ − °

80 61 82 88

6 28∠ 16 4 6j+
6 52 117 34

. .∠61 82

. .28 9∠
. .∠5 117 A

 Example 6.38  Obtain Thevenin’s equivalent network across terminals A and B in Fig. 6.98.

4 Ω

− j1 Ω

10 ∠0° V

+

−
+
−

j2 ΩI

2 I

A

B

Fig. 6.98

Solution

Step I Calculation of V
Th

 (Fig. 6.99)

Applying KVL to the mesh,

        10 0 4 1 2 0

1 64 9 46

∠ °0 4 =2

= 1 64 °
I I1+ I

I

j

. .64 964 A

Writing V
Th

 equation,

    

10 0 4 0 0

10 0 4 64 9 0

3 69 17

∠ °0 4

∠ °0 644 − =
= 3 69 − °17

I V0−
V

V

ThV

ThVV

ThVV  V

( .(11 . )46°

Step II Calculation of I
N
 (Fig. 6.100)

From Fig. 6.100,

I I1

Applying KVL to Mesh 1,

         
10 0 4 1 2 0

10 0 4 1 1 2 0

1

1 2 12

∠ °0 4 =
∠ °0 4 2

I 11 1+1 I2

I1I I I1 11 +1 1

j

j j11 11

( )1 2
 

                         ( ) 1 10 02 = 10 °j j) 1) I 11j1 +1   …(i)

Applying KVL to Mesh 2,

    
2I I

I

2 =I2j j

j jI −I j

1 2 0

2 1I 1 0I I =I1 j I 1 2jjj 2

( )I II I−I I−

4 Ω

− j1 Ω

10 ∠0° V
+

−
+
−

j2 ΩI

2 I

A

B

+

−

VTh

Fig. 6.99

4 Ω

− j1 Ω

100 ∠0°V

I1 I2

+

−
+
−

j2 Ω

2 I

IN

I A

B

Fig. 6.100



6.40 Network Analysis and Synthesis

( ) 1 021j j) 1)I 11j11 …(ii)

Writing Eqs (i) and (ii) in matrix form,

6 1 1

2 1 1

10 0

0
1

2

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1

j j1 −1

I

I

By Cramer’s rule,

I

I I

2

2

6 1 10 0

2 1 0

6 1 1

2 1 1

2 71 102 53

2 71

=

∠1 10 °

= ∠2 71 − °102 53

=I2 ∠−

j

j

j j1

j j1 −1

N

. .7 102∠71  A

10211 53. ° A

Step III Calculation of Z
Th

Z
V

I
Th

ThVV
= =

°
∠ − °

= °
N

3 69 1∠ − 7

2 71 102 53
1 36 8∠ 5 53

. .∠71 102
. .36 8∠ 5 Ω

Step IV Thevenin’s Equivalent Network (Fig. 6.101)

−

+
3.69 ∠−17° V

1.36 ∠85.53° Ω
A

B

Fig. 6.101

 Example 6.39  Find Thevenin’s equivalent network across terminals A and B for Fig. 6.102.

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx

Fig. 6.102

Solution  

Step I Calculation of V
Th

 (Fig. 6.103)

From Fig. 6.103,

     I = −0 2VxV   … (i)

Writing V
Th

 equation,

− ∠ °I V+ ° −∠∠ 0 0=V− xVV  

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx = VTh

I

Fig. 6.103



6.6 Norton’s Theorem 6.41

0 2 5 0 0

6 25 0

6 25 0

V V0

V

V V

x xV V5 0

xV

xV

555 ° =
= 6 25 °

=V ∠ °0

 V

 VThVV

Step II Calculation of I
N
 (Fig. 6.104)

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

0.2 Vx

−

+

Vx IN

Fig. 6.104

From Fig. 6.104,

        VxV = 0

The dependent source depends on the 

controlling variable V
x
. When VxV = 0,  the 

dependent source vanishes, i.e. 0 2 0VxV =  as 

shown in Fig. 6.105.

     IN
j

=
∠ °

+
= − °

5 0∠
1 2+ 4

1 5∠− 3 13.13 A

Step III Calculation of Z
Th

 

Z
V

I
Th

ThVV
= =

∠ °
°

= ∠ °
N

6 25 0∠
1 5∠− 3 13

6 2 5∠ 3 13. .25 5∠ 3 Ω  

Step IV Thevenin’s Equivalent Network (Fig. 6.106)

6.25 ∠0° V

A

B

6.25 ∠53.13° Ω

−

+

Fig. 6.106

6.6    NORTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source I
N
 parallel with 

an impedance Z
N
 where I

N
 is the current fl owing through the short-circuited path placed across the 

terminals.

−

+
5 ∠0° V

A

B

2 Ω j4 Ω

1 Ω

IN 

Fig. 6.105
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 Example 6.40  Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 6.107.

A

B

−j5 Ω

4 Ω

j4 Ω3 Ω

25 ∠0° V
+

−

Fig. 6.107

Solution

Step I Calculation of I
N 

(Fig. 6.108) 

When a short circuit is placed across (4 − j4) Ω impedance, 

it gets shorted as shown in Fig. 6.109.

    

−

+
25 ∠0° V

A

B

3 Ω j4 Ω

IN

Fig. 6.109

IN
j

=
∠ °

= ∠− °
25 0

3 4j+
5 5∠− 3 13.13 A  

Step II Calculation of Z
N
 (Fig. 6.110)

ZN
j j

= = °
( )j ( )j

.
j+ j j

3 4j+ j 4 5j
4 5. 3 9∠∠ 92 Ω

Step III Norton’s Equivalent Network

4.53∠9.92° Ω5∠−53.13° A

A

B

Fig. 6.111

 Example 6.41  Obtain Norton’s equivalent network at the terminals A and B in Fig. 6.112.

j4 Ωj2 Ω

4 Ω1 Ω

5 Ω
A

B

10 ∠30° A

Fig. 6.112

j4 Ω3 Ω

25 ∠0° V
4 Ω

−j5 Ω

A

B

IN

++

−

Fig. 6.108

A

B

−j5 Ω

4 Ω

j4 Ω3 Ω

ZN

Fig. 6.110
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Solution

Step I Calculation of I
N
 (Fig. 6.113)

j4 Ωj2 Ω

4 Ω1 Ω

5 Ω A

B

10 ∠30° A
IN

Fig. 6.113

By series-parallel reduction technique (Fig. 6.114)

5 Ω A

B

10 ∠30° A 1.62 ∠58.24° Ω IN

Fig. 6.114

IN = ∠ °( ) ∠ °
∠ °

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠

= °10 30
1 62∠

1 62∠ 24 5° +
2 69 7∠ 5

. .62 5∠ 8

. .62 5∠ 8
.69 7∠ 5 A  

Step II Calculation of Z
N
 (Fig. 6.115)

j4 Ω

4 Ω

j2 Ω

1 Ω

5 Ω
A

B

ZN

Fig. 6.115

ZN
j j

= + = °5
1 2j+ j 4 4j

6 01 1∠ 3 24
( )j1 2j+ j ( )j4 4j

. .01 1∠ 3 Ω
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Step III Norton’s Equivalent Network (Fig. 6.116)

A

B

2.69 ∠75° A 6.01 ∠13.24° Ω

Fig. 6.116

 Example 6.42  Find Norton’s equivalent network across terminals A and B in Fig. 6.117.

j4 Ω 10 Ω

3 Ω

A

B

4 ∠45° A

25 ∠90° V

−

+

Fig. 6.117

Solution

Step I Calculation of I
N
 (Fig. 6.118)

j4 Ω 10 Ω

3 Ω

A

B

4 ∠45° A

25 ∠90° V
−

+
IN

Fig. 6.118

When a short circuit is placed across the ( ) Ω  impedance, it gets shorted as shown in Fig. 6.119.

10 Ω

A

B

4 ∠45° A

25 ∠90° V
−

+
IN

Fig. 6.119
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By source transformation, the network is redrawn as shown in Fig. 6.120.

10 Ω

A

B

4 ∠45° A IN2.5 ∠90° A

A

B

4 ∠45° A IN2.5 ∠90° A

(a) (b)

Fig. 6.120

IN = 4 4∠ 5 2+ 9∠ 6∠0 2 04° °2+ 5 9∠ 0 6.03 °. .5 9∠ 6∠0 2 A

Step II Calculation of Z
N
 (Fig. 6.121)

j4 Ω

10 Ω

3 Ω

A

B

ZN

Fig. 6.121 

ZN
j

=
+

= °
10

10 3 4j+
3 68 3∠ 6 03

( )j3 4j+
. .68 3∠ 6 Ω  

Step III Norton’s Equivalent Network (Fig. 6.122)

A

B

6.03 ∠62.04° A 3.68 ∠36.03° Ω

Fig. 6.122

 Example 6.43  Obtain the Norton’s equivalent network for Fig. 6.123.

j2 Ω −j− 5 Ω

j5 Ω

5 Ω

A

B

10 ∠0° A j3 Ω

Fig. 6.123
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Solution

Step I Calculation of I
N
 (Fig. 6.124)

j2 Ω −j− 5 Ω

5 Ω

A

B

10 ∠0° A j3 Ω

j5 Ω

IN

Fig. 6.124

By source transformation, the network can be redrawn as shown in Fig. 6.125.

Writing KVL equations in matrix form,

     
5 5

5 0

50 0

0
1

2

j

j

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠ °0⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

I

I

By Cramer’s rule,

I

I I

2

2

5 50 0

5 0

5 5

5 0

10 90

10 90

=

∠ °0

= ∠10 − °90

=I2 ∠− °

j

j

j

N

 A

A

Step II Calculation of Z
N
 (Fig. 6.126)

j2 Ω −j− 5 Ω

5 Ω j3 Ω

j5 Ω

ZN

Fig. 6.126

  ZN j
j j

= +j =5
5 5 5j j+ j

5
( )j5 5j+ j ( )j5

Ω

Step III Norton’s Equivalent Network (Fig. 6.127)

5 Ω10∠−90° A

A

B

Fig. 6.127

j2 Ω
−j− 5 Ω

5 Ω
A

B

j3 Ω

j5 Ω

IN

I2

I1

50 ∠0° V

+

−

Fig. 6.125
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 Example 6.44  Obtain the Norton’s equivalent network for Fig. 6.128.

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
10 ∠45° V

+

−

Fig. 6.128

Solution

Step I Calculation of I
N
 (Fig. 6.129)

Writing KVL equations in matrix form,

15 2 10 2 5

10 2 15 2 0

5 0 15 2

101

2

3

− −2

− +10

− +5 0 15

⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥ =
j j2 102

j j2 15

j

I

I

I

∠ °∠∠⎡

⎣

⎢
⎡⎡

⎢
⎣⎣

⎢⎢
⎤

⎦

⎥
⎤⎤

⎥
⎦⎦

⎥⎥
45

0

0

By Cramer’s rule,

I2

15 2 10 45 5

10 2 0 0

5 0 15 2

15 2 10 2 5

10 2 15 2 0

=

− 2 10 °
− +10

− +5 0 15

− −2

− +10

−

j

j

j

j j2 102

j j2 15

5 055 15 2

1 41 28

+

= ∠1 °

j

.  28 A

   I3

15 2 10 2 10 45

10 2 15 2 0

5 0 0

15 2 10 2 5

10 2 15

=

− ∠2 10 °
− +10

−
− −2

− +10 −

j j2 102

j j2 15

j j2 102

j jj

j

2 0

5 0 15 2

0 49 37 41

− +5 0 15

= 0 49 °. .49 3749 A  

I I IN −I = ∠ ° = ∠− °3 2I− 0 49 3∠ 7 41 1− 41 28 0 51 135. .49 3∠ 7 . .28 0 A

Step II Calculation of Z
N
 (Fig. 6.130)

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
ZN

5 Ω 10 Ω j2 Ω

− j2 Ω10 Ω 5 Ω

A B

(a) (b)

Fig. 6.130

10 Ω 5 Ω

10 Ω

−j− 2 Ω

5 Ω

j2 Ω

A B
10 ∠45° V

+

−

I2

I3

IN
I1

Fig. 6.129
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ZN
j j

= + =
5

5 1+ 0 2j−
5

5 1+ 0 2j+
6 72

( )j10 2j− ( )j10 2j+
.  72 Ω

Step III Norton’s Equivalent Network (Fig. 6.131)

A

B

0.51 ∠−135° A 6.72 Ω

Fig. 6.131

 Example 6.45  Find the current through the 8 W  resistor in the Network of Fig. 6.132.

j4 Ω

10 Ω
8 Ω

20 ∠0° V 5 ∠0° A

5 Ω

+

−

Fig. 6.132

Solution

Step I Calculation of I
N
 (Fig. 6.133)

j4 Ω

10 Ω

5 Ω

A

B

IN 5 ∠0° A20 ∠0° V
+

−

Fig. 6.133

When a short circuit is placed across the ( ) Ω  impedance, it gets shorted as shown in fi g. 6.134.

5 Ω

A

B

IN 5 ∠0° A20 ∠0° V
+

−

Fig. 6.134
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By source transformation, the network is redrawn as shown in Fig. 6.135.

5 Ω

A

B

IN 5 ∠0° A4 ∠0° A

Fig. 6.135

IN = ° + ∠ ° = °4 0∠ 5 0∠ 9 0∠ A

Step II Calculation of Z
N
 (Fig. 6.136)

j4 Ω

10 Ω

5 Ω

A

B

ZN

Fig. 6.136

ZN
j

= = °
5

5 1+ 0 4j+
3 47 6∠ 87

( )j10 4j+
. .47 6∠ Ω

Step III Calculation of I
L
 (Fig. 6.137)

   

IL =
∠ °

∠ ° +
= − °

9 0∠
3 47∠ 87 8

0 79 2∠− 08
. .47 6∠

. .79 2∠ A

 Example 6.46  Obtain Norton’s equivalent network across the terminals A and B in Fig. 6.138.

A

B

10 ∠0° V j 10j Ω

−j− 5 Ω

5I

100 Ω

+

−

I

 

Fig. 6.138

9 ∠0° A 3.47 ∠6.87 Ω

A

B

8 Ω

IL

Fig. 6.137
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Solution

Step I Calculation of V
Th

 (Fig. 6.139)

A

B

10 ∠0° V j10 Ω VTh

I −j− 5 Ω

5I

100 Ω

+

+ + +

−

−

−

−

Fig. 6.139

        I =
∠
+

= ∠−
10 0

100 10
0 1 5 71

°
°

j
. .∠1 5 A

Writing V
Th 

equation,

10 0 0

10 0 100 1 5

∠0

∠ −0 ∠−
° 00 (

1 5∠° 100

Vj

( .0(0 . )71°71 ( )5j ( )5 ( .0

)(5 ) ThV

1 511 0

3 5 85 1

− =
= ∠3 5

. )71

. .5 85∠5 V°
V

V

ThV

ThVV

Step II Calculation of I
N
 (Fig. 6.140)

A

B

10 ∠0° V j10 Ω

I

IN

−j− 5 Ω

5I

100 Ω

+

+ −

−

Fig. 6.140

By source transformation, the network is redrawn as shown in Fig. 6.141.

A

B

10 ∠0° V j10 Ω

I

IN

−j− 5 Ω −j− 25 I
100 Ω

+

+ −

−
I2I1

 

Fig. 6.141

From Fig. 6.141,

 I = I
1 

…(i)
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Applying KVL to Mesh 1,

10 0 100 10 0

10 10 0

1 0

210

∠ −0 =
= ∠10

°
°

I 101 1010

I I1010

j

j1I1 −1

( )1 2−1I I

( )100 10+ j10j1010
  

…(ii)

Applying KVL to Mesh 2,

−
− +

j j+ j

j j j j

j j

10 5 2j 5 0=
10 10 5 25 0=

35

2

1j 0 1jj 5

2j5

( )− 2+ j 5

I j+ I10j+ 10 2j+ 52j+ 5

I Ij5j− 5 == 0

  

…(iii)Writing Eqs (ii) and (iii) in matrix form,

100 10 10

35 5

10 0

0
1

2

+⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ∠⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j10 −10

j j35 −
I

I

°
 

By Cramer’s rule,

I2

100 10 10 0

35 0

100 10 10

35 5

0 6 30 96=

+ ∠10 10

+
= ∠0 6

j

j

j j10 −10

j j35 −

°

°. .6 30∠6 A  

   I IN =I ∠2 0 6 30 96. .∠6 30 ° Α  

Step III Calculation of Z
N

Z
V

I
N

N

= =
∠
∠

=ThVV 3 5 85 1

0 6 30 96
5 83 5∠ 4 14

. .∠5 85

. .∠6 30
. .83 5∠ 4

°
°

° Ω  

Step IV Norton’s Equivalent Network (Fig. 6.142)

A

B

0.6 ∠30.96° A 5.83∠54.14° Ω

Fig. 6.142

 6.7    MAXIMUM POWER TRANSFER THEOREM

This theorem is used to determine the value of load impedance for which 

the source will transfer maximum power.

Consider a simple network as shown in Fig. 6.143.

There are three possible cases for load impedance Z
L
.
 

+

−
ZL

Vs

Zs

Fig. 6.143
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Case (i) When the load impedance is variable resistance (Fig. 6.144)

I

I

L
L

s

V V

V

s

L

s

The power delivered to the load is

        
s L

s

V
2

For power to be maximum,

dP

L

=

⎡
⎢

0

2

2
V

{(

[( s

 

R

R RL
2

0

0−

R X s
2+  

Hence, load resistance R
L
 should be equal to the magnitude of the source impedance for maximum 

power transfer.

Case (ii)  When the load impedance is a complex impedance with 

variable resistance and variable reactance (Fig. 6.145)

I

I

L
s

L
s

V

V

The power delivered to the load is

L L
S L=

2
V

 

For maximum value of P
L
, denominator of the equation should be small, ie. .

PL
S L=

V
2

2( )
 

+

IL

ZL = RL

S RS + jXS

Vs

Fig. 6.144 Purely resistive load

+

S = RS + jXS

ZL = RL + jXL
Vs

Fig. 6.145  Complex impedance load
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Differentiating the above equation w.r.t. R
L
 and equating to zero,

dP

dR

R

R

L

L
s

L

=
−

⎣
⎢

⎦
−

V
2

2

2
0

2

Rs L+
( )

(

R −
=

=
2− 2 0R

0

 

Hence, load resistance R
L
 should be equal to source resistance R

L
 and load reactance X

L

should be equal to negative value of source reactance for maximum power transfer.

ss=  

i.e. load impedance should be a complex conjugate of the source impedance.

Case (iii)  When the load impedance is a complex impedance with variable resistance and fi xed reactance 

(Fig. 6.146)

      

I
V

I
V

L

L
s

The power delivered to the load is

      
s LV

2

For maximum power,

dP

R

L

s

−

0

22
V

Rs L+
{(

0

2 0−

+ +R

R

L L

2

0

0

=

 

R

X L

2+

=

=

+=

( )

L

L

 

+

S = RS + jXS

L  RL + jXL
Vs

Fig. 6.146 Complex impedance load
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Hence, load resistance R
L
 should be equal to the magnitude of the impedance s LjX L+ , i.e. 

Zs LjX L+  for maximum power transfer.

 Example 6.47  For maximum power transfer, fi nd the value of Z
L 

in the network of Fig. 6.147 if 

(i) Z
L 

is an impedance, and (ii) Z
L 

is pure resistance.

Vs ZL

6 Ω −j− 8 Ω

+

−

Fig. 6.147

Solution    Zs = ( )jj− Ω  

(i) If Z
L 

is an impedance

For maximum power transfer,  Z ZL sZ =ZZ
* ( )jj+ Ω  

(ii) If Z
L
 is a resistance

For maximum power transfer,  Z ZL SZ j=ZSZ =6 8j+ j 10 Ω  

 Example 6.48  For the maximum power transfer, fi nd the value of Z
L
 in the network of Fig. 6.148 

for the following cases:

(i) Z
L 

is variable resistance, (ii) Z
L 

is complex impedance, with variable resistance and variable reactance, 

and (iii) Z
L 

is complex impedance with variable resistance and fi xed reactance of j5 W.

j5 Ω

3 Ω2 Ω

A

B

5 ∠0° V

10 A

Fig. 6.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current 

source by an open circuit.

j5 Ω

3 Ω

2 Ω

A

B

ZTh

Fig. 6.149
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ZTh =
+

= +
3

3 2+ 5
1 0

( )+2 5
( .2 . )9

j
j Ω

For maximum power transfer, value of Z
L 

will be,

(i) Z
L 

is variable resistance

Z ZL j=Z =+ jTh 2 1 0 9 2 28. .j+ j1 0 . Ω  

(ii) Z
L 

is complex impedance with variable resistance and variable reactance

Z ZL j=Z −Th
* ( . . )1. 0. Ω  

(iii) Z
L 

is complex impedance with variable resistance and fi xed reactance of j5 Ω

Z ZL j j j+Z =Th 5 2 1 0j 9 5j+ j 6 26.j 0j Ω  

 Example 6.49  Find the impedance Z
L
 so that maximum power can be transferred to it in the network 

of Fig. 6.150. Find maximum power.

3 Ω 3 Ω

− j3 Ωj3 Ω5 ∠0° V

+

−
ZL

Fig. 6.150

Solution

Step I Calculation of V
Th

 (Fig. 6.151)

− j3 Ωj3 Ω

3 Ω 3 Ω

5 ∠0° V

+

+

−

−

IT

VTh

I

A

Fig. 6.151

Z

I

T

T

j

j j
= + = °

=
∠ °

∠ °
= ∠

3
3

3 3 3j j+ j
6 71 2∠ 6 57

5 0∠
6 71∠ 57

0 75

( )j3 3
. .71 2∠ 6

. .71 2∠ 6

Ω

− °−− 26 57.  A

By current division rule,

= − ° × = °

=

0 75 2∠− 6 57
3

3 3 3+
0 75 6∠ 3 43. .75 2∠ 6 . .75 6∠ 3

( )− 3 (

 A

Th

I

VT

j

j j33 −
0 700 5 3 24 26 57. .75 63 ) .2 .∠ °63 4363 ∠24.2 − °26 57  V
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Step II Calculation of Z
Th

 (Fig. 6.152)

 Z
Th 

= [(3 || j3) + 3] || (−j3)

  = 3 ∠−53.12° Ω
 = (1.8 − j2.4) Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be a complex conjugate of the source impedance.

 Z
L
 = (1.8 + j2.4) Ω 

Step IV Calculation of P
max

 (Fig. 6.153)

+

−

(1.8 − j2.4) Ω

(1.8 + j2.4) Ω2.24 ∠−26.57° V

A

B

Fig. 6.153

P
RLR

maPP x W= = =
| |Th | . |

.

T
2 2| |

4

2. 4

4 1× 8
0 7.

 Example 6.50  Find the value of Z
L
 for maximum power transfer in the network shown and fi nd maxi-

mum power.

j10 Ω

−j− 20 Ω

5 Ω

7 Ω

100 ∠0° V

+ − ZL

Fig. 6.154

Solution

Step I Calculation of V
Th

 (Fig. 6.155)

  

I

I

1

2

100 0

5 10
8 94 63 43

100 0

7 20
4 72 70 7

=
∠ °0

= 8 94 − °63 43

=
∠ °0

= 4 72 °

j

j

. .94 6394

. .72 7072

A

A

 

− j3 Ωj3 Ω

3 Ω 3 Ω
A

B

Fig. 6.152

j10 Ω −j− 20 Ω

5 Ω 7 Ω

100 ∠0° V

+
+ −

−

I2

A B

I1

VTh

Fig. 6.155
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V V VThVV V = − ∠A BV V−V ∠( . . )° ( )j ( )° ( )j9. 4 6∠ − 3. )° ( j −) ( 2 70 °° j− 7=) 1 7. 6 9∠∠ 7 3.33° V
 

Step II Calculation of Z
Th

 (Fig. 6.156)

j10 Ω −j− 20 Ω

5 Ω 7 Ω

A B

Fig. 6.156

ZTh = + =
∠ °
∠ °

+
∠− °5

5 1+ 0

7

7 2− 0

50 90

11 18 43

140 90

21

( )10 ( )2− 0

. .∠18 63j j .. .
( . . )

19 70 7
23 0.

∠− °
−= ( 23 j Ω

 

Step III  For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
 = (10.23 + j0.18) Ω

Step IV Calculation of P
max

 (Fig. 6.157)

+

−

(10.23 − j0.18) Ω

(10.23 + j0.18) Ω71.76 ∠97.3° V

A

B

Fig. 6.157

P
RLR

maPP x  W= = =
| |Th | . |

.
T

2 2| |

4

76

4 1× 0 2. 3
125 84

 Example 6.51  Find the value of load impedance Z
L
 so that maximum power can be transferred to it in 

the network of Fig. 6.158. Find maximum power.

+

−
j10 Ω

3 Ω

2 Ω

50 ∠45° V
ZL

Fig. 6.158
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Solution

Step I Calculation of V
Th

 (Fig. 6.159)

+ +++

−−
j10 Ω

3 Ω

2 Ω

50 ∠45° V VThTT

I

AAA

BB

Fig. 6.159

I

V

=
∠ °

+
= − °

∠−

50 5

3 2+ 10
4 47 1∠− 8 43

I 47

j

I =

. .7 1∠ 8

( )2 10j ( )2 10j+2 ( .4

 A

ThVV 1811 45 6 6. )43 . .6 60=) ∠ °60 2660  V

 

Step II Calculation of Z
Th

 (Fig. 6.160)

j10 Ω

3 Ω

2 Ω

ZThTT

A

B

Fig. 6.160

ZTh =
+

=
3

3 2+ 10
64 0+

( )+2 10
( .2 . )72

j
j Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be complex conjugate of the source 

impedance.

Z
L
 = (2.64 − j0.72) Ω

Step IV Calculation of P
max

 (Fig. 6.161)

+

−

(2.64 + j0.72) Ω

(2.64 − j0.72) Ω45.6 ∠60.26° V

A

B

Fig. 6.161

P
RLR

maPP x W= = =
| |Th | . |

.
.

T
2 2| |

4

6

4 2× 64
196 91
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 Example 6.52  Determine the load Z
L
 required to be connected in the network of Fig. 6.162 for 

 maximum power transfer. Determine the maximum power drawn.

j1 Ω

2 Ω 4 Ω4 ∠0° A ZL

Fig. 6.162

Solution

Step I Calculation of V
Th

 (Fig. 6.163)

j1 Ω

2 Ω 4 Ω4 ∠0° A

I1 I2

A

B

VTh

+

−

Fig. 6.163

I

V I

2

2

4 0
2

6 1
1 31 9 46

4 4I2 315 9 5 26

= 4 ° × = ∠1 315 − °9 46

I2 ∠− ∠−
j

. .315 9∠315

( .1 . )46° .

A

ThVV 9 499 6° V

 

Step II Calculation of Z
Th

 (Fig. 6.164) 

ZTh =
+

= ° =
4

4 2+ 1
1 47 1∠ 7 1 41 0+

( )+2 1
. .7 1∠ 7 ( .1 . )43

j
j Ω

Step III Calculation of Z
L

For maximum power transfer, the load impedance 

should be the complex conjugate of the source impedance.

Z
L
 = (1.41 − j0.43) Ω

Step IV Calculation of P
max

 (Fig. 6.165)

+

−

(1.41 + j0.43) Ω

(1.41 − j0.43) Ω5.26 ∠−9.46° V

A

B

Fig. 6.165

P
RLR

maPP x W= = =
| |Th | . |

.

T
2 2| |

4

2. 6

4 1× 41
4 9. 1  

j1 Ω

2 Ω 4 Ω

A

B

ZTh

Fig. 6.164
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 Example 6.53  In the network shown in Fig. 6.166, fi nd the value of  Z
L    

for which the power  transferred 

will be maximum. Also fi nd maximum power.

5 ∠60° Ω 10 ∠−30° Ω

10 ∠0° V 5 ∠90° VZL

+

−

+

−

Fig. 6.166

Solution

Step I Calculation of V
Th 

(Fig. 6.167)

5 ∠60° Ω 10 ∠−30° Ω

A
VTh

B

I

10 ∠0° V 5 ∠90° V

+

−

++

− −

Fig. 6.167

Applying KVL to the mesh,

10 0 60 90

26 11 18 3 4

∠0

∠− ∠11 18 −
° (5 ° 5 ° = 0
11.18

) )) )( 0 300 °30

. (57 −° . .18 3∠18

30

3 033°)

AI = 1 2∠− 3 14°
 

Writing V
Th 

equation,

10 0 60 0

10 0 60 1 23 0

6 71

∠0

∠0 ∠ − − =
=

° (5 °)
° (5 °

V

V

V

ThV

ThVV

ThVV

) ( . )14°
∠ −∠∠ 26 56. ° V

 

Step II Calculation of Z
Th

 (Fig. 6.168)

5 ∠60° Ω 10 ∠−30° Ω

A
ZTh

B

Fig. 6.168

ZTh = = +
(

. ( . .
5 6∠ 0

5 6∠ 0 3∠− 0
4 47 3∠∠ 3 4. 3 = ( 73 2 4. 6

°)(10 °3∠− 0 )
° 0 °

° Ω j )) Ω
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Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

L j=ZTh
* ( . . )7. 3 2j− Ω  

Step IV Calculation of P
max

 (Fig. 6.169)

A

B

+

−
6.71 ∠−26.56° V

(3.73 − j2.46) Ω

(3.73 + j2.46) Ω

Fig. 6.169

P
RLR

maPP x

( . )
= = =

VThVV
W

2 2

4

7. 1

4
3 0. 2

× 3.73
 

 Example 6.54  In the network shown in Fig. 6.170, fi nd the value of Z
L 

so that power transfer from 

the source is maximum. Also fi nd maximum power.

j9 Ω

j9 Ωj9 Ω

ZL
8 Ω

10 ∠0° V

+

−

Fig. 6.170

Solution

Step I Calculation of V
Th

 (Fig. 6.171)

Applying Star-delta transformation (Fig. 6.172)

Z Z Z1 2Z 3
9 9 9

3=Z2Z = =
( )9 ( )9j j)9 (

j j j9 9999
j Ω

 V
Th 

=
 
Voltage drop across (8 + j3)Ω impedence

=
∠

=( )+
10 0

8 3+ 3
8 5. 4 1∠−∠ 6 3. 1

j j+3

°
° V

A

B

VTh

j9 Ω

j9 Ωj9 Ω

8 Ω

+
−

10 ∠0° V

Fig. 6.171
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A

B

VTh
8 Ω

+
−

Z3

Z1

Z2

10 ∠0° V

Fig. 6.172

Step II Calculation of Z
Th

 (Fig. 6.173)

j3 Ω

j3 Ω

j3 Ω

8 Ω

ZTh

Fig. 6.173

ZTh = + = Ω + Ωj
j

j j+
j3

3

3 8+ 3
5 1 8∠ 2 49 Ω = 72 5

( )j+8 3

)
. .51 8∠ 2 ( .0 . )46°

 

Step III Calculation of Z
L

For maximum power transfer, the load impedance should be the complex conjugate of the source 

impedance.

Z ZL j=Z − Ω∗
Th ( . . )7. 2 5j− j

Step IV Calculation of P
max

 (Fig. 6.174)

A

B

+

−
8.54 ∠−16.31° V

(0.72 − j5.46) Ω

(0.72 + j5.46) Ω

Fig. 6.174

P
RLR

maPP x

( . )

.
.= = =

VThVV
W

2 2

4

5. 4

4 0× 72
25 32



 6.7 Maximum Power Transfer Theorem 6.63

 Example 6.55  For the network shown in Fig. 6.175, fi nd the value of Z
L
 that will transfer maximum 

power from the source. Also fi nd maximum power.

j10 Ω4 Ω

5Vx

Vx

ZL

100 ∠0° V
+
−

+

−

+

−

Fig. 6.175

Solution 

Step I Calculation of V
Th

 (Fig. 6.176)

From Fig 6.176,

      V IxV 4

Applying KVL to the mesh,

             

100 0 4 10 5 0

100 0 5 0

100 0

24 10

∠0 −
∠0 =

=
∠

+
=

°
°

°

I I10− 10 V

I 5−

I

j

j

xV

( )4 10+ 10j ( )4I4

3 833 5 22 62. .85 22 ° Α

 

Writing V
Th

 equation,

100 0 4 0

100 0 4 85 22 0

86 3 95

∠ 0 =
∠0

= ∠86

°
85 22° 4

°

I V−
V

V

ThV

ThV

ThVV V

( .3(3 . )62°62  

Step II Calculation of I
N
 (Fig. 6.177)

From Fig. 6.177,

        V IxV 4 1  

Applying KVL to Mesh 1,

        
100 0 0

25
1

1

∠0

=
° 4

I A
 

Applying KVL to Mesh 2,

  

−
− =
− − =

= ∠
−

j

j

j

x

N

10 5 0=x

10 0

10 5 0

50 90

2

2 5

2

2

1

I V− x5 x2

I 52 − 5

I

I

I I=N

( )4 14I44

( )100

°A

II2 25 50 90 63 43= −25 ∠ ∠90 −° 55.9 °Α.

 

Step III Calculation of Z
Th

    
Z

V

I
Th

ThVV
= =

∠
= Ω + Ω

N

j
86 3 95

55 9 6∠− 3 43
1 54 6∠ 7 38 Ω = 59

. .9 6∠ 3
. .54 6∠ 7 ( .0 . )

°
°

°
 

j10 Ω

5Vx

Vx
4 Ω +

−

VTh

A

B
I

+

−

−

+

100 ∠0° V
+
−

Fig. 6.176

j10 Ω4 Ω

5Vx

Vx

IN

A

B
100 ∠0° V

+
−

+

−

+

−
I2I1

Fig. 6.177
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Step IV Calculation of Z
L

For maximum power transfer,   L j=Z − Ω∗
Th ( . . )5. 9 1j− j

Step V Calculation of P
max

 (Fig. 6.178)

A

B

+

−
86 ∠3.95° V (0.59 − j1.42) Ω

(0.59 + j1.42) Ω

Fig. 6.178

P
RLR

maPP x

( )

.
.= = =

VThVV
W

2 2

4 4 0× 59
3133 9  

 6.8    RECIPROCITY THEOREM

The Reciprocity theorem states that ‘In a linear, bilateral, active, single-source network, the ratio of excitation 

to response remains same when the positions of excitation and response are interchanged.’

 Example 6.56  Find the current through the 6 W resistor and verify the reciprocity theorem.

1 Ω

+

−

2 Ω

I

−j− 1 Ω

j1 Ω
5 ∠0° V

Fig. 6.179

Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 6.180)

1 Ω

2 Ω

I

I1 I2

−j− 1 Ω

j1 Ω
+

−
5 ∠0° V

Fig. 6.180

Applying KVL to Mesh 1,

5 0 1 1 0

1 5 0

1

21

∠ °0 −1 =
∠5 °

11

I 11

j

j1I1 −1

( )1 2− 2I I

( )1 1j11

  

…(i)
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Applying KVL to Mesh 2,

−
− =

j j

j

1j+1 2 0=
1 2 0

2 22

1 2

( )− I − 22 − 2

I2+1 2+
  

…(ii)
Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

5 0

0
1

2−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

= ⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1 −1

j

I

I

°

By Cramer’s rule,

       
I

I I

2

2

1 1 5 0

1 0

1 1 1

1 2

1 39 56 31

1 39 56 31

=

1 5

−

−

= 1 39

=I2

j

j

j j1 −1

j

°

° Α

° Α

. .39 5639

. .39 56

 

Case II Calculation of current I when excitation and response are interchanged (Fig. 6.181)

I

1 Ω

2 Ω

I1 I2

−j− 1 Ω

j1 Ω
+

−
5 ∠0° V

Fig. 6.181

Applying KVL to Mesh 1,

−1I

I

1

2

1 0

1 0I2I

j

jI1I

( )1 2I I1I 21I

( )1 1j11
  

…(i)

Applying KVL to Mesh 2,

     
− ∠

− = −
j j

j

1 1j+ 2 5− 0 0=
1 2 5 0∠

2 22

1 2

( )− I − 22 − 2

I2+1 2+
°

°
  

…(ii)

Writing Eqs (i) and (ii) in matrix form,

1 1 1

1 2

0

5 0
1

−
⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

=
−5

⎡
⎣⎢
⎡⎡
⎣⎣

⎤
⎦⎥
⎤⎤
⎦⎦

j j1 −1

j

I

I2 °
By Cramer’s rule,

I

I I

1

1

0 1

5 0 2

1 1 1

1 2

1 38 123 69

1 39 56 31

=
−5

−

= ∠1 38 −

= 1 39

j

j j1 −1

j

°
° Α

° Α

. .38 123∠38

. .39 5639

 

Since the current I is same in both the cases, the reciprocity theorem is verifi ed.
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 Example 6.57  In the network of Fig. 6.182, fi nd the voltage V
x
 and verify the reciprocity theorem.

10 Ω

Vx

j5 Ω −j− 2 Ω

j5 Ω

−

+
20 ∠90° A

Fig. 6.182

Solution

Case I Calculation of voltage V
x
 when excitation and response are interchanged. (Fig. 6.183)

10 Ω

Vx

Ix

j5 Ω −j− 2 Ω

j5 Ω

−

+
20 ∠90° A

Fig. 6.183

By current division rule,

I

V I

x

x xV I

= = ∠( )∠
( )j+

( )j+ j ( )j j−
.∠.

( )j

) ( j
17 77 91°= ∠)

( )j+
1 46 77 91 Α

=== ( )− ( .) ( 4. 6 7∠ 7 9. 1 1∠−∠ 2 0. 9°) 34.92 ° V

Case II Calculation of voltage V
x
 when excitation and response are interchanged (Fig. 6.184)

+

−

10 Ω

Vx

Ix

j5 Ω −j− 2 Ω

j5 Ω

20 ∠90° A

Fig. 6.184

Ix = ∠ =(
( )j−

( )j− j ( )j j+
20 90

) ( jj
3 1. 2 3∠−∠ 8 6. 6°) °Α

  
VxV x( )j ( )j ( .IIxI) ( j 1. 2 3∠− 8 6. 3=6 4 8. 8 1∠− 2 0. 9°) °V

 

Since the voltage V
x
 is same in both the cases, the reciprocity theorem is verifi ed.
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