Elementary Network

Theorems

EXN| nTrRODUCTION

In Chapter 1, we have studied basic network concepts. In network analysis, we have to find currents and
voltages in various parts of networks. In this chapter, we will study elementary network theorems like
Kirchhoff’s laws, mesh analysis and node analysis. These methods are applicable to all types of networks.
The first step in analyzing networks is to apply Ohm’s law and Kirchhoff’s laws. The second step is the
solving of these equations by mathematical tools.

EX]| xirRcHHOFF'S LAWS

The entire study of electric network analysis is based mainly on Kirchhoff’s laws. But before discussing this,
it is essential to familiarise ourselves with the following terms:
Node A node is a junction where two or more network elements are connected together.
Branch  An element or number of elements connected between two nodes constitute a branch.
Loop A loop is any closed part of the circuit.
Mesh A mesh is the most elementary form of a loop and cannot be further divided into other loops.
All meshes are loops but all loops are not meshes.

1. Kirchhoff’'s Current Law (KCL) The algebraic sum of currents
meeting at a junction or node in an electric circuit is zero.
Consider five conductors, carrying currents [, I,, I3, I, and I
meeting at a point O as shown in Fig. 2.1. Assuming the incoming
currents to be positive and outgoing currents negative, we have

[1 +(—[2)+[3 +(—[4)+I5 =0
L—-1L,+13—-14+15s=0
Li+3+1s=1+14 Fig. 2.1 Kirchhoff’s current law

Thus, the above law can also be stated as the sum of currents flowing towards any junction in an
electric circuit is equal to the sum of the currents flowing away from that junction.

2. Kirchhoff's Voltage Law (KVL) The algebraic sum of all the voltages in any closed circuit or mesh
or loop is zero.
If we start from any point in a closed circuit and go back to that point, after going round the circuit,
there is no increase or decrease in potential at that point. This means that the sum of emfs and the sum of
voltage drops or rises meeting on the way is zero.
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3. Determination of Sign A rise in potential can be assumed to be positive while a fall in potential can
be considered negative. The reverse is also possible and both conventions will give the same result.

(i) Ifwe go from the positive terminal of the battery or source to the negative terminal, there is a fall in
potential and so the emf should be assigned a negative sign (Fig. 2.2a). If we go from the negative
terminal of the battery or source to the positive terminal, there is a rise in potential and so the emf
should be given a positive sign (Fig. 2.2b).

| 1]
[ II
S — B —
(a) Fall in potential (b) Rise in potential
Fig. 2.2 Sign convention

(1)) When current flows through a resistor, there is a voltage drop across it. If we go through the resistor
in the same direction as the current, there is a fall in the potential and so the sign of this voltage
drop is negative (Fig. 2.3a). If we go opposite to the direction of the current flow, there is a rise in
potential and hence, this voltage drop should be given a positive sign (Fig. 2.3b).
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(a) Fall in potential (b) Rise in potential

Fig. 2.3 Sign convention

"m In Fig. 2.4, the voltage drop across the 15 €2 resistor is 30 V, having the polarity
indicated. Find the value of R.

2A
———AWW—
o—— AW
_t B 3A
15Q 30V §H
+ _
/
[
|
100V
Fig. 2.4

Solution Current through the 15 Q resistor

I:£:2A
15

Current through the 5 Q resistor=5+2=7 A
Applying KVL to the closed path,
=-5(7)-R(2)+100-30=0
-35-2R+100-30=0
R=175Q
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"m Determine the currents 1), I, and I; in Fig. 2.5.
I2

Fig. 2.5

Solution  Assigning currents to all the branches (Fig. 2.6),

(h-L+9+1;+4) (l3+4)
Fig. 2.6
From Fig. 2.6,
L=5L-1,+9+1;+4
I, -1;=13 ...(1)
Also, —127,-8(I,-1,)=0
205, +81, =0 ...(11)
and -127,-1615=0 ...(111)
Solving Egs (i), (ii) and (iii), L =4A
I, =10 A
I;=-3A

"m Find currents in all the branches of the network shown in Fig. 2.7.

Fig. 2.7
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Solution Let Ly =x
[FE =x-30
Then
IED :X+40
]DC =x-80
Ieg = x—20

IBAZ.X—SO

Applying KVL to the closed path AFEDCBA
(Fig. 2.8),

Fig. 2.8

~0.02x —0.01(x —30) = 0.01(x +40) —0.03 (x —80) — 0.01(x — 20) — 0.02 (x —80) = 0

x=41A
I, =41 A
Irp =41-30=11A
Ipp =41+40=81A
Ipc =41-80=-39 A
Icp =39 A
Icp =41-20=21A
Igy =41-80=-39 A
I,3=39A

" Example YW Find currents in all the branches of the network shown in Fig. 2.9.

4Q

C
B AAN
30 ;59
20
- AV
1A O 10 A
Fig. 2.9

Solution  Assigning currents to all the branches (Fig. 2.10),
Applying KVL to the closed path OBAO,

—2(1-x)-3y+1(x)=0
3x-3y=2 ...(1)
Applying KVL to the closed path 4BCA,
3y—4(l-x—y)+5(x+y)=0
Ox+12y =4 ...(11)

1A

(1-x-y) 4Q
B
3Q
2Q
(1-x)
1A O 10 X

Fig. 2.10
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Solving Eqgs (i) and (i),

x=057A
y=-0.095 A
Tos =057 A
Iog =1-0.57=043 A
I =0.095A

Lic =0.57-0.095=0.475 A
Isc =1-0.57+0.095 = 0.525 A

2.5

"m What is the potential difference between points x and y in the network shown in Fig. 2.11?

20 X I
I

/ 4V + _
) _
¥ B L +

O
y
Fig. 2.11
. 2
Solution I =——=04A
243
4
L=——=05A
3+5

Potential difference between points x and y =V, =V, -V,

Writing KVL equation for the path x to y,
Ve+3L+4-31,-V, =0
Ve+3(0.4)+4-3(0.5)-V, =0
V=V, =-3.7
Ve =-317V

" SEINICWHW  Find the voltage between points A and B in Fig. 2.12.

L 60
100 D/ T 20V §49 q/ §

! >

@ A A I
50 5V 120 15V
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Solution I = 20 =133A
10+5

[2:i:1‘5A
446

From Fig. 2.13,
Voltage between points A and B=V,z =V, —Vp

Writing KVL equation for the path 4 to B,
Vy=56L-5-15+61,-V=0
Vy—=5(1.33)-5-15+6(1.5)-Vz =0
Vy—=Vp =17.65 ®

VAB :1765V

5Q 5V 12Q 15V
Fig. 2.13

" SETUIIWNB  Determine the potential difference V , for the given network in Fig. 2.14.

30 2A
A A (<) 5
W,
10 Q

5V —— 29< gy §5Q ;49

O
B

Fig. 2.14

Solution The resistor of 3 Q is connected across a short circuit. Hence, it gets shorted (Fig. 2.15).

2A
A
N 10Q +
5V— 2Q§ 8V §SQ C §4Q
I1 B B I2
6
B
Fig. 2.15
I] = é = 25 A
2
12 = 2 A
Potential difference Vig =V4 V3

Writing KVL equation for the path 4 to B,

Vy=2L+8-51, -V =0
Vi—2(2.5)+8=5(2)=V3 =0



Vi-Vg=1
VAB = 7V

" SEINICWRR  Find the voltage of the point A w.r.t. B in Fig. 2.16.

5Q

A
NNV S

5A

2.2 Kirchhoff’s Laws

+
10V —

(&)
Z
3Q

I

2.7

Bo
Fig. 2.16

I :£:1.25A
5+3

I,=5A
Applying KVL to the path from 4 to B,
Vy—=31,-84+31, -V =0
Vy—3(1.25)-843(5) -V =0
Vy—Vp =-3.25
Vig=-325V

" SETI WA [ Fig. 2.17, what values must R, and R, have

(a) whenl, =4 A and I, =6 A both charging?
(b) when I, =2 A discharging and I, =20 A charging?

(c) whenl, =0?
®th 28 © @

Solution

110V —

l
@ @ ©
Fig. 2.17
Solution  Applying KVL to the closed path abcfa,
110-2(1+1;)-R 1, -80=0
110-27,-21,-R I -80=0
Q+R) L +21, =30 (1)
Applying KVL to the closed path fcdef,
80+ RI} — Ry, -50=0
R — R, =-30 ...(11)
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Case (a)

Case (b)

Case (c)

I, =4 A and I, = 6 A both charging

Le. I,=4Aand,=6A
Substituting /, and 7, in Eq. (1),
2+R)4+2(6)=30
R, =25Q
Substituting R,, /, and 7, in Eq. (i1),
2.5(4)-R,(6)=-30
R, =6.67 Q
I, =2 A discharging and /, = 20 A charging
1e. I,=-2Aand,=20A
Substituting /, and 7, in Eq. (1),
2+R)(-2)+2(20)=30
R, =3Q
Substituting R,, /; and 7, in Eq. (i1),
3(=2)—-R,(20)=-30
R,=12Q
1,=0
Substituting in Eq. (1)
2+R)(0)+21,=30

of RisI, = 0?

Substituting /; and /, in Eq. (ii),
0—-15R,=-30
" SETIJWROR /1 Fig. 2.18, find I, and I, when (a) R = 2.3 £.(b) R = 0.5 £ and (c) for what values
Gk 022 © ®
Iy I

0.2Q
130V = R

I 110V
@ @ ®

Fig. 2.18

Solution Applying KVL to closed path abcda,

130-0.2(/; +1,)-0215,-110=0
047,+0.27,=20

Applying KVL to the closed path dcefd,

110+027, —RI, =0
0211 —R[2 = —110

...(ii)



Case(@) R=23Q
Substituting R in Eq. (ii),
0211 —2.3]2 = —1 10
Solving Eqgs (i) and (iii),
I, =25A
12 = 50 A
Case(h)) R=05Q
Substituting R in Eq. (i),
0211 —0.5]2 = —110
Solving Egs (i) and (iv),

[1 = —SOA
I, =200A
Case(c) 1,=0
Substituting /; in Eq. (i),
021, =20
I, =100 A

Substituting /, and 7, in Eq. (i1),
0.2(0)—R(100)=-110
R=1.1Q

" SEIICWMEN /1 Fig. 2.19, find the value of R.

10Q

AVAAY

80V —

Fig. 2.19

Solution  Assigning currents to all the branches (Fig. 2.20),

Applying KVL to the closed path abcda,
80—-107-14(/-3)=0
I=508A
Applying KVL to the closed path dcefd,
14(7-3)-3R=0
14(5.08-3)-3R=0
R=9.71Q

2.2 Kirchhoff's Laws 2.9

. (i)
...(1v)
3A
§14Q ;R
® 1 10¢Q © 3A ®
> NN\ >
(1-3)
80V T %49 ;R
[ 4
@ @ ®
Fig. 2.20
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" Example )MV Determine current drawn by the ammeter shown in Fig. 2.21.

10Q 5Q
NV NV

9V

59; gsosz ®)

Fig. 2.21
Solution  Assigning currents to all the branches (Fig. 2.22),
Applying KVL to the closed path abcda, (U + 1)
S(L+1)+9-10(; +1,) =301, = ® 100 © 50 O)
(h+1)+9-10(51+1;,)-305,=0 . . AAA AAA,
450 +151, =9 ...(0) ; /
vV — 2
Applying KVL to the closed path dcefd, °
307 =51, =0 ...(i0) § 30 Q
5Q
Solving Eqgs (i) and (i1),
I,=04A
Current drawn by ammeter = 0.4 A (@ @ @
Fig. 2.22
"m Find branch currents in the various branches of Fig. 2.23.
10Q 20Q
AVAVAY NV
0.1 Q § § 0.2Q
5Q
2V _T_ __I__ 4v
Fig. 2.23
Solution  Assigning currents to various branches (Fig. 2.24),
Applying KVL to the closed path abcda,
2015 —101, —5(1, —15) =0 ® m © h m ©
151L-5, =2 ...() - g
(h—1h)
Applying KVL to the closed path dcefd, 0.1 § § 02Q
5Q
5([] —[2)—20]2 —0.2[2 -4 = O
SL-2520=4 ..(Gi) ,, L €L,
Solving Eqgs (i) and (ii), T
I, =0.086 A @ @ @

]2 = _0142 A Fig. 2.24
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" SEIN WS /1 Fig. 2.25, find the value of R and current flowing through it when the current is

zero in the branch OA.

Solution  Assigning currents to all branches (Fig. 2.26),
Applying KVL to the closed path OACO,

48013 —1.5(1’1 —13)+R([2 +[3): 0
But current in the branch OA4 is zero,
1.e.
[3 = 0
—-151+RI, =0 ...(1)

Applying KVL to the closed path BOCB,
41, —R(lz +13)—2(11 +[2)+10 =0

But I;=0
2L —-(6+R)I, =-10 ..(ii)) B
Applying KVL to the closed path BOAB,
—41,+4801;+1; =0

But ;=0
—4 ]2 + ]1 =0
Substituting /; in Eq. (1) and (i1),

—61,+RI,=0 (IV)
and -141,-RI, =-10 ...(v)
From Eq. (iv) and (v),

[2 = 05 A

Substituting /, in Eq. (iv),
—6(0.5)+R(0.5)=0

R=6Q
Currentinbranch OC=1,+1;=05A
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" ENNICWREN /1 Fig. 2.27, find the current supplied by the battery.

2Q
AVAVAY;
6Q 2Q
50V — AVAVAY
5Q
4Q 30
Fig. 2.27

Solution  Assigning currents to all the branches (Fig. 2.28),
Applying KVL to the closed path OABEDO,

50—2(1,+ 1)~ 61, —4(I, — I;) = 0 @ P 20
1251+21,—-41; =50 (1)
Applying KVL to the closed path BCEB,
—212 +513 +6[1 =0
6-21,+51;,=0 (11) 50V =

Applying KVL to the closed path ECDE,

—5[3—3(I2+[3)+4(]1—]3):0 4Q 30
4[1—3[2—12]3 =0 (111) @
Solving Egs (i), (i1) and (iii), . @
[=2817A Fig. 2.28
I, =6.647 A
I, =-0.723 A

Current supplied by the battery =7, + I, =2.817+6.647 =9.464 A

" SETN IR /1 Fig.2.29, find the current flowing through the 2 Q2 resistor.,

16 Q
WV

16 Q 32 Q
20V —/— —_— 20V

2Q

Fig. 2.29
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Solution  Assigning currents to all the branches (Fig. 2.30),
Applying KVL to the closed path OABFGO,

20-161,-213=0 B (/1:/2) Bl 1\‘;\2{ C (/1+I>2_I3)D
161, +215 = 20 () I%

2 Q
Applying KVL to the closed path BCFB, 160 8

—161,+32(/; —13)+161, =0 20V —/
481, -161,+321;=0 (11) FYlh
Applying KVL to the closed path GFCDEG, 20

(I I) —— 20V

21, -32(I; - I3)-20=0
3270, +341,=20  ...(iii)

Fig. 2.30
Solving Egs (i), (i1) and (iii),
I;=105A

I, =632 A
]3 = 158 A
Current through the 2 Q resistor = /3 =1.58 A

" EINICWRYE 1 Fig. 2.31, find the current through the 4 Qresistor.

20 20
—/\'\’\’ WV
12V — 120 ~—10V
AN\ AN
1Q 30
I AN
24V 4Q
Fig. 2.31

Solution  Assigning currents to all the branches (Fig. 2.32),
Applying KVL to the closed path ABEDA,

20 -12(1, -L)+1(I; -1;)+12=0 2Q Iy 2Q
2 —12(L - I3)+1(L1 - I2) ' A b Bl S c
L=151+121;=-12 ...(1) (b - I3)
) 12V —/— 120 ——10V
Applying KVL to the closed path BCFEB,
(hh-1) (- 1) K
—2[3—10+3(11—13)+12(12—I3)=O D E AN\ F
3Q
3L 4125 -171 =10 ... (i) e
Applying KVL to the closed path DEFHGD, I,
a1 A H
—1([1—[2)—3([|—]3)—411+24=0 24V 4Q

81 +1,+31;=-24 .. .(ii) Fig. 2.32
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Solving Egs (1), (ii) and (iii),

I =411A
L =272A
I;=2.06 A

Current through the 4 € resistor=71; =4.11 A

" Example YW [n Fig. 2.33, find the current through the 10 Q resistor.

4V -

Solution  Assigning currents to all the branches (Fig. 2.34),
Applying KVL to the closed path ABGHA,

—5(]] +[2)—15[1 +4=0
201 —51, =4

Applying KVL to the closed path BCFGB,

—107, —81; +15I, =0
151, =101, =815 =0

Applying KVL to the closed path CDEFC,

—12(12 —13)—64'8[3 =0
127, +201;, =6

Solving Egs (i), (i1) and (iii),

=019 A
I, =0.032 A
,=032A

Current through the 10 Q resistor =7, = 0.032 A

" Example YN [n Fig. 2.35, determine the current supplied by each battery.

20Q
AW

BVT

40 Q

2Q

—‘— 12V

Fig. 2.35

5Q 10Q 12 Q
AN\ AN\ AN\
- §159 §89 —_— 6V
Fig. 2.33
A(/1+/2) 5Q p Ig 1\(/)\/{2 C 1\?\/8 (/2—/3)D
. I1 I3
...(1) oy — % L v
15Q 8Q
H G F E
...(11) Fig. 2.34
...(111)
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Solution  Assigning currents to all the branches (Fig. 2.36),
Applying KVL to the closed path ADEA,

—401, +8-11; =0
I, +407, =8 (1) I
Applying KVL to the closed path ABDA,
=20(L -1)-10(1 -1, +13)+401, =0
-304,+701,-1075=0 ..(i) 8V

1Q

12V
Applying KVL to the closed path BCDB, —‘I:: 5 TC
2[3—12+10(]1—[2+I3)=0 .
Fig. 2.36
107, =101, +1215 =12 (iii)
Solving Egs (i), (i), and (iii),
1, =0.1005 A

Current supplied by the 8 V battery = /; =0.1005A 7, =0.197 A
Current supplied by the 12 V battery = /3 =1.081A [, =1.081 A

" ENJCWWIR  [n Fig. 2.37, find the value of the unknown resistance R such that 2 A current flows

through it.
2 A R
> AN

2Q 4Q
AW A

10V %39 =50

Fig. 2.37

Solution  Assigning currents to all the branches (Fig. 2.38),

Applying KVL to the closed path ABCDEA, 4 2A ’\/\%\ .
2R+4(L -1, -2)+2([1-2)=0
_ 2Q 4Q (- |, -
61,41, ~2R=12 () o L Y oYY ek
/ ey
Applying KVL to the closed path HEDGH, liA ; 0 2(51 o ?
10-2(1,-2)-37,=0 10V —
21,+31, =14 (11) H G F
Applying KVL to the closed path GDCFG, Fig. 2.38
3L -4 -1, -2)-5(I;-1,)=0
Solving Eqs (i), (i1) and (iii),
I,=376 A
I, =216A
R=0.98Q

Unknown resistance R = 0.98 Q
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" SENWNICWWEN /1 Fig. 2.39, find the current delivered by the 12 V battery.

40% %49 —12v

Fig. 2.39

Solution  Assigning currents to all the branches (Fig. 2.40),
Applying KVL to the closed path ABCDEA,

3(L-1,)-21,-5(I,-13)=0
31,-101,+51; =0 ()

Applying KVL to the closed path HEDGH,

4([1 —]3)+5(]2 —[3)—4[3 = O
41,+51,-131;=0 ...(ii)

Applying KVL to the closed path GDCFG,

AL +21,—12441, =0
4]1+2]2+4]3 =12 (111)

Solving Egs (1), (i1), and (iii),
I, =1.66 A
I,=093A
I3;=0.87A
Current delivered by the 12 V battery =7; =1.66 A

EXAMPLES WITH DEPENDENT SOURCES

"m In the network of Fig. 2.41, find I;, I, and V.
%4

I l2

2A D 30 4V 6Q

Fig. 2.41
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Solution Applying KCL at the node,

2+4V:K+K
K+K—4V:2
7
-—V=2
2
4
V=-=V
7
4
A—K———A
3 21
LoVo_2
6 21

"m Find voltages V; and V, in the network of Fig. 2.42.

| 2Q 41
— + —_—
+ V- +
6V T 40 V,
Fig. 2.42

Solution Applying KVL to the loop,
6-21+4I -4 =0
I1=3A
From Fig. 2.42,
V,=21=23)=6V
V,=41=4(3)=12V

" SEINN WL  Find the power delivered by the dependent source in the network of Fig. 2.43.

;1€ 3V,
f—/\AM Z*
+
3oV -‘V Vx2050Q
AW
3Q
Fig. 2.43
From Fig. 2.43,
V., =051

Applying KVL to the loop,

30-1/+3V,-057-31=0
30-7+3(0571)-057-31=0
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30-37=0
I=10A
V,=0.510)=5V
Power supplied by the dependent source =(3V,) (/) =3 x5x10=150 W

"m Find the current I, in the network of Fig. 2.44.

8V

4vl {I %; 10 V4 1216V
S

Fig. 2.44

Solution  Applying KVL to the left loop,
—-4+8-11=0
"N=4V
Applying KCL to the right part,
10M+1,=0
104)+1, =0
I, =-40 A

" SEI WL  Find the voltage V. in the network of Fig. 2.45.

+ 6 Q
]
2A(ve >V,
v, 230
Fig. 2.45
Solution Applying KCL at the node,
2ty ()
6 9
From Fig. 2.45,
v, |4 ..
v, =3—|=— ...(>i1)
g 9) 3
Substituting Eq. (ii) in Eq. (i),
2+ l V_)‘ — &
3 9
Ve
18 9
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" SETWNCWWIR  [n the network of Fig. 2.46, find the current I, and power dissipated in the 500 2

resistor.

j, 300Q
50V T 500 Q 0.4 I
Fig. 2.46
Solution  Assigning currents to all the branches as shown in Fig. 2.47.
@ Iy 300 Q @ @
0.6 I,
50V
T 500 Q 0.4
@ @ ®
Fig. 2.47

Applying KVL to the closed loop abcda,

50—-30017, —500(0.6 /) =0
I, =0.083 A
Power dissipated in the 500 Q resistor = 500 (0.6,)* =500 (0.6 x 0.083)* =1.24 W

" SEIWNCWWER  Find the current I in the network shown in Fig. 2.48.

2A 50 i
(<)
N |
4V
30 . 3V,
V,=20
Fig. 2.48
Solution  Assigning currents in all the branches as shown in Fig. 2.49.
2A 50
@ N © w1 ®
P Y (I-2)
— 4V
20 2 + sy,
v, Z 20
® @ ®
Fig. 2.49
From Fig. 2.49,
Ve=2(1-2) (1)

Applying KVL to the closed loop fecdf,
3V, -51-4-2(1-2)=0
3[2(1-2)]-51-4-2(I-2)=0
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61-12-51-4-21+4=0
-1=12
I=-12A

EXEN| mesH anaLysis

A mesh is defined as a loop which does not contain any other loops within it. Mesh analysis is applicable only
for planar networks. A network is said to be planar if it can be drawn on a plane surface without crossovers.
In this method, the currents in different meshes are assigned continuous paths so that they do not split at a
junction into branch currents. If a network has a large number of voltage sources, it is useful to use mesh
analysis. Basically, this analysis consists of writing mesh equations by Kirchhoff’s voltage law in terms of
unknown mesh currents.

Steps to be Followed in Mesh Analysis

1. Identify the mesh, assign a direction to it and assign an unknown current in each mesh.
2. Assign the polarities for voltage across the branches. V,
3. Apply KVL around the mesh and use Ohm’s law to (|

express the branch voltages in terms of unknown mesh '
currents and the resistance. v == R, R,
4. Solve the simultaneous equations for unknown mesh ' T | /
currents. LA ! /\/\/2\/
Consider the network shown in Fig. 2.50 which has three meshes. R, /D R,
Let the mesh currents for the three meshes be /,, /,, and /5 and all | I3
the three mesh currents may be assumed to flow in the clockwise L AAAY
direction. The choice of direction for any mesh current is arbitrary. Vs Fs
Applying KVL to Mesh 1, Fig. 2.50
N=R(L,=1)=R (I, =15)=0
(R+R)L-R L, -RI3=V (1)
Applying KVL to Mesh 2,
Vi-Rslr —Ry([, —3)-Ri (I —-15)=0
—R1[1+(R1+R3+R4)[2—R4I3:V2 (11)
Applying KVL to Mesh 3,
R (I3 1)~ Ry (53— 1)~ RsI3+V3=0
—Ry Iy — R4I» +(R2 + Ry +R5)[3 =V, (111)
Writing Egs (i), (i1), and (ii1) in matrix form,
Ri+Ry -R -R, [n] [W]
—Ry R+ R+ Ry —Ry L=V
R, —Ry Ry+Ry+Rs || 3] | V3]

In general,
Ry Ro Rs|[4L] [W
Ryy Ry Rys|| L |=|V

Ry1 Ry Rz || I3 £
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where, R;, = Self-resistance or sum of all the resistance of mesh 1
R, = R,, = Mutual resistance or sum of all the resistances common to meshes 1 and 2
R |3 = R;; = Mutual resistance or sum of all the resistances common to meshes 1 and 3
R,, = Self-resistance or sum of all the resistance of mesh 2
R,3 = R3, = Mutual resistance or sum of all the resistances common to meshes 2 and 3
R3 = Self-resistance or sum of all the resistance of mesh 3
If the directions of the currents passing through the common resistance are the same, the mutual resistance
will have a positive sign, and if the direction of the currents passing through common resistance are opposite
then the mutual resistance will have a negative sign. If each mesh current is assumed to flow in the clockwise
direction then all self-resistances will always be positive and all mutual resistances will always be negative.
The voltages V|, V, and V; represent the algebraic sum of all the voltages in meshes 1, 2 and 3 respectively.
While going along the current, if we go from negative terminal of the battery to the positive terminal then its
emf is taken as positive. Otherwise, it is taken as negative.

" SEINICWWEN  Find the current through the 5 Qresistor is shown in Fig. 2.51.

1Q 2Q

NV AVAYAY,
3Q$ ésg
10V—/— |

Fig. 2.51

Solution  Assigning clockwise currents in three meshes as shown in Fig. 2.52.
Applying KVL to Mesh 1,

10-14, =3(l = 1,)-6(L; = 13) =0 S s
107, =31, —615 =10 ..(0)
Applying KVL to Mesh 2, 30 é /D % >
—3(I,-1,)-21,-5I,-5=0 | C
“31,+101, =5 iy OV /D v
Applying KVL to Mesh 3, . 6Q § D §4 Q
—6(I3—1))+5-413+20=0 ! §
—61,+1015 =25 .. (i) 20V
Writing Eqgs (i), (ii) and (iii) in matrix form, Fig. 2.52

10 =3 -6|[1,] [10
3 10 0|7,|=|-5
6 0 10]|715] |25

We can write matrix equation directly from Fig. 2.52,
Ry Ra Rys||h 4

Ry Ry Ry || |=|1
Ry Ry Ry || L3 Vs
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where R,, = Self-resistance of Mesh 1 =1+3+6=10Q
R, = Mutual resistance common to meshes 1 and 2 =-3 Q

Here, negative sign indicates that the current through common resistance are in opposite direction.
R,; = Mutual resistance common to meshes 1 and 3 = -6 Q

Similarly, Ry =-3Q
R22 =34+2+5=10Q
R23 = O
R31 = —6 Q
Ry =0

R33 =6+4=10Q
For voltage matrix,
=10V
Vo ==5V
V; = algebraic sum of all the voltages inmesh3=5+20=25V
Solving Egs (1), (i1) and (ii1),

I, =427 A
I,=0.78 A
1, =506 A

ISQ :[2 :078A

" SETWNCWRIVE  Find the current through the 2 Q resistor of the network shown in Fig. 2.53.

6 Q 2Q
VMV Vv
10V — 1Q 3Q 10Q
l
20V
Fig. 2.53

Solution  Assigning clockwise currents in three meshes as shown in Fig. 2.54,
Applying KVL to Mesh 1,

6 Q 2Q
10-60,-1(/;-1;)=0 AAA, NS
71, -1, =10 () D D D
10V — 10 30 100
Applying KVL to Mesh 2, I / ,
1 Pl 3
(I, =1)-21,-3(I, - 13)=0 !
-1, +61,-313=0 ...(i1) 20V
Applying KVL to Mesh 3, Fig. 2.54
=3(I3—1,)-101;-20=0
=31, +131;, =-20 ...(111)

Solving Egs (1), (i1) and (iii),
I1=134A

I, =-0.62 A



I; =-1.68 A
IZQ 212 =-0.62 A

2.3 Mesh Analysis 2.23

" ENNICWIIN  Derermine the current through the 5 2 resistor of the network shown in Fig. 2.55.

L,

g1V
1|
8V — 10
— VWV A%
20 30
AW
12v 35Q
Fig. 2.55

Solution  Assigning clockwise currents in three meshes as shown in Fig. 2.56.

Applying KVL to Mesh 1,
8—-1(I1—1,)-2(I,-15)=0

3[]—[2—213 :8 (1)
Applying KVL to Mesh 2,
10—41’2 —3(12 —173)—1(12 _[i): O
L +81,-31;=10 (i)
Applying KVL to Mesh 3,
—2([3 —]1)—3(]3 —[2)—5]3 +12=0
—21,-31,+1015=12 ...(1i1)

Solving Eqs (1), (i1), and (ii1),

I, =601 A
I,=327A
I;=338A

ISQ :]3 =338A

8V —

"m Find the current supplied by the battery of the network shown in Fig. 2.57.

3Q
AAAY
10 00
2
AAAY

4V —
I1>
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Solution
Applying KVL to Mesh 1,
4—3[1 —1([1 —[2’)—4([1 —]3): 0

8[1—12—413 =4 (1)
Applying KVL to Mesh 2,
2L -5(IL-1I;)-(I,-1)=0
- +81,-515=0 (11)
Applying KVL to Mesh 3,
—613-4(3-H)-53-1)=0
41, -5, +151;=0 ...(111)
Solving Egs (1), (i1) and (iii),
I, =0.66 A
I, =024 A
I3=026 A
Current supplied by the battery =7, = 0.66 A.
"m Find the current through the 4 Q2 resistor in the network of Fig. 2.58.
2Q 2Q
AW AW
2Q 'ZD
6V
8V 40
h) |
20 ) 2Q
Iy
Fig. 2.58
Solution Applying KVL to Mesh 1,
8—2[] —2([] —4’2)—2(]1 —[3): O
65 -21,-21;=8 (i)
Applying KVL to Mesh 2,
—2([2 —]])—2[2 —4([2 —]3)—6 =0
—211+81,—41;=-6 (11)
Applying KVL to Mesh 3,
—2([3 —]1)+6—4(I3 —[2)—213 =0
—2]1—4]2+8[3 =6 (111)

Solving Egs (1), (i1) and (iii),
11 =2A
I,=05A
]3 = 15 A

]4Q :]3—12 :15—05:1A
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" SET N CWRYW  Determine the voltage V which causes the current I, to be zero in the network

of Fig. 2.59.

6 Q

20V —/—

NNV

2Q ,:) 3Q
’) AN
10

Iy 50Q ) 40
TV s
Fig. 2.59
Solution Applying KVL to Mesh 1,
20-61 -2(L, - 1,)-5(I, - 1;)-V =0
V+131,-21,-513 =20 ()
Applying KVL to Mesh 2,

—2(]2 —[1)—312 —1(]2 —[3): 0
20-61,+1;=0 ...(ii)

Applying KVL to Mesh 3,

—1(13 —[2)—4]3 +V—5(I3 —[1):0

V+5h+1,-10I3=0

Putting 7, = 0 in Eqs (1), (i1) and (iii),

.. (i)

V—212—513 =20
—612 +I3 =0

Vel =101, =0

Solving Egs (i), (i) and (iii),

.(iv)

V=437V

"m Find the current through the 2 2 resistor in the network of Fig. 2.60.

Ry ot

o TV b

Fig. 2.60

Solution Mesh 1 contains a current source of 6 A. Hence, we can write current equation for mesh 1. Since
direction of current source and mesh current /; are same,

I,=6 ..(0)
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Applying KVL to Mesh 2,
36 -12(/, - 5L)—-6(I, —13)=0
36-12(I, -6)-61,+61;=0
181, —615 =108

Applying KVL to Mesh 3,
—6(l3—1,)-31;-213-9=0
61,-11/5=9
Solving Egs (ii) and (iii),
I;=3A
Lo =13=3A

" SCI I WM  Determine the mesh currents I, I, and I in the network of Fig. 2.61.

30V

I
"

=
15Q
AV

L,

b
A

— 50V

Fig. 2.61
Solution  Applying KVL to Mesh 1,
-30-6L—-15(I;-1,)=0
211, —151, = -30
Applying KVL to Mesh 2,
—10(12 —]3)—15([2 _Il)+50_5]2 =0
—-151,+307, -1015 =50

For Mesh 3,
13 =1
Solving Egs (1), (i1) and (iii),
11 =0
]2 = 2 A
]3 = 1 A

" SEIWI WY  Find the current through the 5 2 resistor in the network of Fig. 2.62.

)

O}

n
@)

»
l

2

=

QP 1 el

Fig. 2.62

...(ii)

...(iii)

...()

...(ii)

...(iii)
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Solution  Writing current equations for Meshes 1, 2 and 4,

[1 =4 (1)
I, =3 ...(11)
I,=-3 ... (iii)
Applying KVL to Mesh 3,
“S(L-5)-2(13-1,)-2(I;-14)-2=0 ...(1v)
Substituting Eqs (i), (ii) and (iii) in Eq. (iv),
—S5(I;-4)-2(1-3)-2([3+3)-2=0
[3 = 2 A
I5Q :11—]3 =4-2=2A
EXAMPLES WITH DEPENDENT SOURCES
" EINN WM Obtain the branch currents in the network shown in Fig. 2.63.
I, 5Q 10/p 5Q g
——A\W ¥ = ANN—
10 Q
5V —10V
51,
Fig. 2.63
Solution  Assigning clockwise currents in two meshes as shown in Fig. 2.64,
From Fig. 2.64, l
I =1 G l, 5Q 10/g 5Q
a=h (”) o S0 o TG
IB = 12 . .(11)
Applying KVL to Mesh 1, 10Q
5-51I1-1013 —10(1; = 1,)-51,=0 SV v 3 T 1oV
5-51,-101, —10,+101, =51, =0 h 5[,
-201; =-5 Fig. 2.64
1
I =Z=0.25A ...(ii1)

Applying KVL to Mesh 2,
51,-10(I,-1,)-51,-10=0
SLH-10/,+10L =51, =10
155, -151, =10

. (iv)
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Putting /, = 0.25 A in Eq. (iv),
15(0.25)—-157, =10
I, =-0.416 A

" SET N CWIIERN  Find the mesh currents in the network shown in Fig. 2.65.

2Ve 40 20
F = A AW
+ V-
50% 10
" —10V
5V 2V,
Fig. 2.65
Solution  Assigning clockwise currents in the
two meshes as shown in Fig. 2.66, 2V, 40 50
From Fig. 2.66, ...(1) F > AN AN
V,=-51, . Ve
5Q 1Q
V2=20 L O D DR
Applying KVL to Mesh 1, 5\~ / oV ;
T 1 1 2
S-5L-2V, -4, -1( -1,)+211 =0
=5-50,-2Q2L)-4L -L+1,+2(-51;)=0 Fig. 2.66
200, +31, =-5 (111)
Applying KVL to Mesh 2,
2W-1(l,-Hh)-21,-10=0
2(-5h)-L+1-21,=10
11]1—3[2 =10 (IV)
Solving Egs (iii) and (iv),
L =0.161A
I, =-2742 A

" SETTJWROE  Find currents I and I, of the network shown in the Fig. 2.67.

2l 40 I, 20
T = AN—>- A

—10V




2.3 Mesh Analysis 2.29

Solution  Assigning clockwise currents in the two Meshes as shown in Fig. 2.68.

From Fig. 2.68, 21, 10 |, 0
I, =1 £ AMN—>- A
L=h=h 502 10
Applying KVL to Mesh 1, ‘> 3 10V
S-S5 =21, 4L -1(I,—1,)+21,=0 SV h 2l, b
550 -2(L 1)) —4L -+, +21, =0 Lt
551 =25 +21, —4L - L+, +21; =0 Fig. 2.68
10, +31,=5 ...(iii)
Applying KVL to Mesh 2,

=21, -1(I,-1})-21,-10=0
25— +1,-21, =10
-I,-31,=10 ..(iv)
Solving Egs (iii) and (iv),

Lh=-2- 1364
11

IL,=-2878A

I, =-1364 A

I, =1 —1,=-1364+2.878=1.514 A

" SEIN WS Find the currents in the three meshes of the network shown in Fig. 2.69.

o 1Q 10 I, 10
AW AW AN
I,V
5V— 10 MH1A
10
Iy
Fig. 2.69

Solution  Assigning clockwise currents in the three meshes is shown in Fig. 2.70.

10 10 Iy 10
——"\MN\ AN + - AN
ly
5V— ) ) §1Q ) @ TA
l 1Q I Iy
Yl
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From Fig. 2.70,
]lel
]y = 12 —[3
Applying KVL to Mesh 1,
S5-L-(I,-1I3)- (I, -1,)=0

20 +1;,=-5
Applying KVL to Mesh 2,
=1y —L)+1, =11, -1, -1(I,-13)=0
(L -+ -L)-L -1 -(I,-15)=0
-21,=0
For Mesh 3,
I;=-1
Solving Egs (iii), (iv) and (v),
L =2A
I,=0
I;=-1A

()
...(ii)

.. (i)

(iv)

..(v)

" SEN N CWRYR  For the network shown in Fig. 2.71, find the power supplied by the dependent voltage

source.

50 Q
AVAVAY

20 Q 30 Q

AVAVAY AVAAY,

+ +
5A (D v, "No4 v, 4 Y001 v,
Fig. 2.71

Solution  Assigning clockwise currents in three Meshes as shown in Fig. 2.72.

50 Q
AAAY
200 p 30Q
AAAY AAAY
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From Fig. 2.72,
=201 -1;)-041,=0
0.6 =201-2015
i =33.331-33.3313

For Mesh 1,
[1 =5
For Mesh 2,
I, =-0.01V; =-0.01(33.331; —33.3313)
0.337;+1,-03313=0
Applying KVL to Mesh 3,

—5013 —30(I3 —[2)—20([3 —11) =0
—2017,-307,+1007; =0

Solving Egs (ii), (ii1) and (iv),
[1 =5 A

I, =-147A
I; =0.56 A
Vi =33.331,-33.3315 =33.33(5)-33.33(0.56) =148 V
Power supplied by the dependent voltage source =0.4 V, (I, — I,) =0.4 (148)(5 + 1.47) =383.02 W

" SENNCWRER  Find the voltage V, in the network shown in Fig. 2.73.

0.45 A
D)
\_/

16.67 Q 33.33 Q

AYAYAY AVAVAY

+V, -

1 25Q _
30V . 2V,
-[ 10V
Fig. 2.73
Solution  Assigning clockwise currents in the three meshes as shown in Fig. 2.74.

0.45A
)
N4

16.67 Q 33.33Q

N\ AVAVAY

+V, -
‘> 25Q

30V — )> )2V,

/1 .|, 0V /

2.31

..(i)

... (iii)

...(1v)
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From Fig. 2.74,
V, =16.671
Applying KVL to Mesh 1,
-30-16.671, —33.33(1; —13)—-25(; - 1,)-10=0
-30-16.671; —33.331;+33.3315 251, +251, -10=0
=750 +251,+33.331; =40

Applying KVL to Mesh 2,
10-25(l, -)+2V, =0
10-25(I, - 1) +2(16.671;)=0
10-257,+251,+33341,=0
58341, -251,=-10
For Mesh 3,
I; =045
Solving Egs (ii), (ii1) and (iv),
L =-09A
I, =-17A
I;=045A

V,=16.671=16.67(-0.9)=-15V

" SENNCWRYR  For the network shown in Fig. 2.75, find the mesh currents I, I, and I,.

15 A
D
D
2Q 0.111 V, 10
- AWM
) +
—AMNA ——/\WW\
1Q 2Q
Fig. 2.75
Solution From Fig. 2.75,
Ve=3(-15)
Writing current equation for the two current sources,
]3 = 15
and 0.111Vx:[1—[3

0111[3 ([1 —[2):[1 —[3
03337,-03331, -1, +1;=0
~0.6671;-0.3331,+15=0

...(ii)

.. (i)

...(1v)

...(v)

...

...(ii)

... (iii)
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Applying KVL to Mesh 2,
3L -1I)-1(I,-15)-21,=0
3L+61,-1;=0 ...(1v)
Solving Egs (ii), (iii) and (iv),
L =17TA
L=11A
I;=15A

" SETII W LW For the network shown in Fig. 2.76, find the magnitude of V, and the current supplied
by it, given that power loss in R; = 2 Qresistor is 18 W.

5Q 10 Q 5Q
NV NV AYAVAY
+V, -

Fig. 2.76
Solution  Assigning clockwise currents in meshes is shown in Fig. 2.77.
+V, -
Vo= 3 5293 §4Q A 2v, ) §2Q> §RL=2Q
Iy A Iy Iy
Fig. 2.77
From Fig. 2.77,
V=51 (@)
Also,
I, R, =18
1,(2)=18
I,=3A (i)

Applying KVL to Mesh 1,
VO —5]1 —2([1 —12): 0

THL-21, =V, ...(111)
Applying KVL to Mesh 2,
-2, -5L)-41,=0
-20+61,=0 ...(iv)
For Mesh 3,

I, =2V, =2(5I))=101,
107,13 =0 (V)
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Applying KVL to Mesh 4,
=214 —-13)-51,-21,=0
—201+91,=0
-2154+93)=0
I;=135A

From Eq. (v),

I :[—3:13—'5:1.35A
10 10
From Eq. (iv),
-2(1.35+61,=0

I, =045A

From Eq. (ii1),
7(1.35)-2(0.45) =V,

Vo =855V

Current supplied by voltage source V=1, =135 A

" SEII WM [n the network shown in Fig. 2.78, find voltage V, such that V, = 0.

2A8D 0.1V, QBsA

A AW

24V V,220 Q Ve

Fig. 2.78

Solution  Assigning clockwise currents in four meshes as shown in Fig. 2.79.

From Fig. 2.79, .
Vo=20(I-1;)  .0) 5 ) %> k) A)
Writing current equations for Meshes 1 and 2, 2A t Iy /01 Vy J 3A

I =2 ...(ii)

10Q

50Q
AW

I, =3 ... (i)

24\

Applying KVL to Mesh 3,
24-10(3 - 1;)—20(I5—14)=0

§2OQ<>I

4

- V2

24-10(13=2)—=20(I3—14)=0
3075 +201, = —44 .(iv)

Applying KVL to Mesh 4,
—20([4—13)—5([4—12)+V2 =0
2014 —13)-5(4-3)+V>, =0
200; =251, =-V, -15
V.=20
2013 —14)=0
;=1

But

...(v)



2.4 Supermesh Analysis 2.35
From Eq. (iv),
-3017;+20/; =44
;=44 A
I, =44 A
From Eq. (v),
20(44)-25(44)=-1,-15
V=7V

EXY| suPerMESH ANALYSIS

Meshes that share a current source with other meshes, none of which contains a current source in the outer
loop, form a supermesh. A path around a supermesh doesn’t pass through a current source. A path around each
mesh contained within a supermesh passes through a current source. The total number of equations required
for a supermesh is equal to the number of meshes contained in the supermesh. A supermesh requires one
mesh current equation, that is, a KVL equation. The remaining mesh current equations are KCL equations.

" SEINI WY Find the current through the 10 Qresistor of the network shown in Fig. 2.80.

5Q

10 :> 109/) <D4A/>§1SQ

ZVT Iy

Fig. 2.80

Solution  Applying KVL to Mesh 1,
2-1[1 —10([] —[2) =0
11[1-10[2 =2 (1)
Since meshes 2 and 3 contain a current source of 4 A, these two meshes will form a supermesh. A
supermesh is formed by two adjacent meshes that have a common current source. The direction of the current
source of 4 A and current (/5 — /,) are same, 1.e., in the upward direction.
Writing current equation to the supermesh,1
I;-1,=4 ...(ii)
Applying KVL to the outer path of the supermesh,
—10(12 _Il)_5]2 —15[3 =0

10, =151, -1513 =0 ...(iii)
Solving Egs (1), (i1) and (iii),
L =-235A
I, =-278 A
I3=122A ...(1v)

Current through the 10 Q resistor =1, — I, =—(2.35) - (-2.78) =043 A
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" SEINICWR W Find the current in the 3 Qresistor of the network shown in Fig. 2.81.

210 >

Lo

210

7V — 2
Iy + 7A 3Q
2Q Iy
Fig. 2.81

Solution Meshes 1 and 3 will form a supermesh.
Writing current equation for the supermesh,

]1 —[3 = 7
Applying KVL to the outer path of the supermesh,
7-1([1 —[2)—3([3 —[2)—113 =0
—]1 +412 —413 =-7
Applying KVL to Mesh 2,
- -1)-20,-3(1,-15)=0
L —-61,+31;=0

Solving Egs (1), (ii) and (iii),

11:9A
I,=25A
13:2A

Current through the 3 Q resistor=/,—1;=25-2=05A

..()

...(ii)

...(iii)

" Example yN:CM  Find the current in the 5 Q2 resistor of the network shown in Fig. 2.82.

§1OQ ’,>

2

50V —+ | 2 A

D Lo—m—

i
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Solution Applying KVL to Mesh 1,
50-10(1, —1,)-5(I, - 15)=0
151, -101, =515 =50 (1)
Meshes 2 and 3 will form a supermesh as these two meshes share a common current source of 2 A.
Writing current equation for the supermesh,

[2—]3 :2 (ll)
Applying KVL to the outer path of the supermesh,
—10([2 —[1)—2[2 —1[3 —5([3 —[1) = 0

—15L+121,+615=0 ...(iii)
Solving Egs (i), (i1) and (iii),
I,=20A
I, =1733 A
I; =1533 A

Current through the 5 Q resistor =/, — ;=20 - 1533 =4.67 A

" SEINCWRAVE  Determine the power delivered by the voltage source and the current in the 10 2
resistor of the network shown in Fig. 2.83.

50V T

Fig. 2.83

Solution Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,

I, —-1,=3 (1)
Applying KVL to the outer path of the supermesh,
50—5]1 —5]2 —10(12 —13)—1(]1 —[3) =0

61 —151,+1113 =-50 ...(1)
For Mesh 3,
I;=10 ...(111)
Solving Egs (1), (i1) and (iii),
I,=9.76 A
I, =676 A
13 =10 A

Power delivered by the voltage source = 50 7, =50 X 9.76 =488 W
IIOQ = [3 —12 =10-6.76=3.24 A
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" SEINI WS  For the network shown in Fig. 2.84, find current through the 8 Q resistor.

60
AW
/23
20 ‘0 60 110
N
3 A ; 5V ‘\79__
IS

12A
0V
Fig. 2.84

Writing current equations for Meshes 1 and 4,

Il = —3

14 =-12
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,

]3 - ]2 =7

Applying KVL to the outer path of the supermesh,

5—4([2 —]1)—6]2 —8(]3 —[4)+IO:O
5 4(I,+3)—61, —8(I3+12)+10=0

-107, =815 =93
Solving Egs (iii) and (iv),
I, =-828 A
I;=-128 A

Isa=13-1,=-128+12=10.72 A

EXAMPLES WITH DEPENDENT SOURCES

"m In the network of Fig. 2.85, find currents I, and L.

80 v, 3%
IW  d I -
— 2Q
10V ) > §109
I 3A
Fig. 2.85
Solution From Fig. 2.85,
-10-85L -V, =0
VO = —10—8]1

Meshes 1 and 2 will form a supermesh.
Writing current equations for the supermesh,

]2—[1:—3

(i)
...(ii)

... (iii)

...(1v)

...()

(i)
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Applying KVL to the outer path of the supermesh,
-10-81, -3V, -101, =0
-10-87, -3(-10-87;)-107, =0
161, -107, = -20

Solving Egs (ii) and (iii),

I} =-833A
I, =-1133A
"m In the network of Fig. 2.86, find the current through the 3 £2resistor.
-4V 30
| AW
+ 1Q
202y, >5v,
B 2A
Fig. 2.86
Solution  Assigning clockwise currents in two meshes as shown in Fig. 2.87.
From Fig. 2.87, . _av 30
Vx:—ZIl (1) Il AW
Meshes 1 and 2 will form a supermesh. + 10
Writing current equations for the supermesh, 2Q % V, D ) +
]2—[]:2 (11) /1 2A 12
Applying KVL to the outer path of the supermesh, Fig. 2.87

21, -4-31,-5V,=0
—2[1 —4—3[2 —5(—211)20

81, -3, =4 ...(iii)
Solving Egs (ii) and (iii),
L =2A
I,=4A
Lo=0L=4A

" SCINACWRY  Find the currents I, and I, at the network shown in Fig. 2.88.

10 Q
14Q 40 AN
AW AW )

-

1oV = ’> 202V, 05V, )%69
I I

2.39

...(iii)

5V,
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Solution From Fig. 2.88,

Vi=2(1, - 1)
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,

-1, =05V, =05x2(-LL)=L-1,
Iy=1
Applying KVL to outer path of the supermesh,
—2(I,-5L)-1013-67,=0
2L+2L-10,-61,=0

Applying KVL to Mesh 1,
110-141, -4 -2(I;-1;)=0
110-207,+21, =0
110+207;+27, =0

12 = —5 A
[1 = —[2 =5A
"m For the network of Fig. 2.89, find current through the 8§ 2resistor.
51,
100 T
AN ANWN—>—

80
50V T
T’X 051, T 52V

Fig. 2.89

Solution  Assigning clockwise currents to the three meshes as shown in Fig. 2.90.
From Fig. 2.90,

[y:IZ_[S' (11)

Meshes 1 and 2 will form a supermesh.

Writing current equation for the supermesh, — 52V

12 —11 =0.5 Ix =0.5 (—11)
-0505L+1,=0 ...(1i1)
Applying KVL to the outer path of the supermesh,

50-10(I, — I;)—6(I, —I;)—81, =52 =0
—107, —141, +1613 =2 .(iv)
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Applying KVL to Mesh 3,
51, -6(I3-1,)-10(Iz—-1)=0

J
S —13)-6(;-1,)-10(/3-1;)=0

1004+1,-1115=0 (V)
Solving Eqgs (iii), (iv) and (v),
I} =-156 A
=-0.58 A
I;=-1.11A

Iiao=1,=-058 A

" SEINICWRAW  For the network shown in Fig. 2.91, find the current through the 10 Qresistor.

109 20\, 5Q 4Q
AW
15V ) 2A ) 2’1) — 40V
l5
Flg. 291

Solution Meshes 1, 2 and 3 will form a supermesh.
Writing current equations for the supermesh,

L -1,=2 ...(0)
]3—]2 :211 (11)
and 2L+1,-1;=0

Applying KVL to the outer path of the supermesh,
15-107, -20-51, —415+40=0

104 +51,+41; =35 ....(iii)
Solving Egs (i), (ii) and (iii),
;=196 A
I, =-0.04 A
=389 A

[109 = [1 :196A

" SENNCWRYE  [n the network shown in Fig. 2.92, find the power delivered by the 4 V source and

voltage across the 2 Q2resistor.

20 6Q
AV AW
+ V-
5A ,D 4Q
&> ‘ AW
5Q
S0 s ) o
4vT A I
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Solution From Fig. 2.92,
V=21, (1)
Meshes 1 and 2 will form a supermesh.
Writing current equation for the supermesh,
L-1,=5 ...(i1)
Applying KVL to the outer path of the supermesh,
4-5L,-2L -6 -4 - L1)—-1(I,-13)=0

—125,-61,+51;=-4 ...(111)
For Mesh 3,
I3 = BL_2h_ I
2 2
L-1;=0 --(1v)
Solving Egs (ii), (ii1) and (iv),
L =-2A
I,=3A
I=-2A

Power delivered by the 4 V source =47,=4(3)=12 W
VzQ = 211 = 2(—2) = —4 V

" SCINIIWRY W  Find currents I, I,, I, I, of the network shown in Fig. 2.93.

1 1 1

EQ %Q EQ
A A A
1 - 5V, 1
502V, D Q =79
6V - (¥) 40
I
1 4
I %FQ
Fig. 2.93
From Fig. 2.93,
1 :
Vx:g(l2_[1) (1)
For Mesh 4,
1, =40 ...(11)
Applying KVL to Mesh 1,
1 1 1
—-6-—1,—=(,-1,)-=(,-1,)=0
101 5\ 2) o\ 4)
1 1 1 1 1
—6-—1—=1Li+=1,——1,+—(40)=0
ol Tshrsh gt gto)
1 2
—lll+_12:—_ ---(111)
15 5 3
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Mesh 2 and 3 will form a supermesh.
Writing current equation for the supermesh,

1
L-L=5V, =5|:§(12 —11):|= L -1
[1-2[24‘]3 =0 (IV)
Applying KVL to the outer path of the supermesh,

1 1 1 1
(=T ——Ty—— Ty == (I~ I2) = 0
5(2 1) TR 2(3 4)
11 1 1 11

L=l —— I —— s —— I, +—(40) = 0
shrsh—5pl g bt;10

1 1 17

g11 —le —%13 =-20 (V)
Solving Egs (ii1), (iv) and (v),
L =10A
I, =20A
I;=30A
14, =40 A

EXJ| ~opE AnALYsis

Node analysis is based on Kirchhoff’s current law which states that the algebraic sum of currents meeting
at a point is zero. Every junction where two or more branches meet is regarded as a node. One of the nodes
in the network is taken as reference node or datum node. If there are n nodes in any network, the number of
simultaneous equations to be solved will be(n — 1).

Steps to be followed in Node Analysis

1. Assuming that a network has » nodes, assign a reference node and the reference directions, and
assign a current and a voltage name for each branch and node respectively.

2. Apply KCL at each node except for the reference node and apply Ohm’s law to the branch currents.

Solve the simultaneous equations for the unknown node voltages.

4. Using these voltages, find any branch currents required.

(98]

" ENNJCWRSLN  Calculate the current through 2 Qresistor for the network shown in Fig. 2.94.

Vo 05€ v
1 Q% 10Q %1 Q
2Q
20V T -[ 20V
Fig. 2.94

Solution  Assume that the currents are moving away from the nodes.
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Applying KCL at Node 4,

VA_20+V_A+M:O

1 1 0.5

11 1 1 20

—+-+— |V ——Vy=—

(1 1 0.5)A 05 1

4V, -2Vp =20 ..(1)

Applying KCL at Node B,

V=Va Vb  V5=20 _
05 2 1

1 1 1 1 20
NI P

0

0.5 05 2 1 1
—2V,;+3.5Vp =20 ...(11)
Solving Eqgs (1) and (i1),
Vy=11V
Vg =12V
Current through the 2 € resistor = V7B = % =6A

" SEINICWHIN  Find the voltage at nodes 1 and 2 for the network shown in Fig. 2.95.

1Q v, 2Q V,

O] ®

1A 2Q 1Q 2A

e
Fig. 2.95

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

h o h-h
2 2
1 1 1
—+—|N-=1=1
2 2 2
=051, =1 ..(1)
Applying KCL at Node 2,
- hh
1 2

1 1
—— N+ 1+=|V, =2
2 2

0.5V, +1.5V, =4 ...(ii)



2.5 Node Analysis  2.45

Solving Eqgs (i) and (i),
V=2V
V2 = 2 V

" SEINICWHRIN  Find the current in the 100 2 resistor for the network shown in Fig. 2.96.

20Q v, 30Q A

60V T 1A 50 Q §1oog
40V
L
Fig. 2.96

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

h-60_ %-V
20 30

1 1 1 6
( + )Vl——VZ:—OH

=1

20 30 30 20
0.0837; —0.033V, = 4 (1)

Applying KCL at Node 2,
— V, —40
oh DB
30 50 100

1 1 1 1 4
-—— Nt —=t=+— | :—0
30 30 50 100 50

~0.033 ¥, +0.063 ¥, = 0.8 ...(ii)

Solving Egs (i) and (ii),
V,=67.25V

V2 = 48 V
V, 48 _

Current through the 100 € resistor = —=—=
100 100

" SENNCWHAYR  Find V, and V, for the network shown in Fig. 2.97.

1Q

V4 Vg 2Q
N IVVV\ Py
2A<D 20 %29 1A l2v
'y [
T
L

Fig. 2.97

048 A
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Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 4,

s Va Va=l Vi-Vs
2 2 1

1 1 1
—+—+1 |V, Vg =2+~
(2 2 )A 5 2
W, —Vy =25 (1)
Applying KCL at Node B,
Va=Va Va=2_
1 2

1 2
Vi+|{1+= |V =1+—
(i3] =143

1 ...(ii)

V1.5V =2

Solving Egs (i) and (ii),
Vy=2875V

V=325V

" SCI I WHER Find currents I,, I, and I, for the network shown in Fig. 2.98.

v, 10Q V, 2Q
5Q
2Q§ 40 50 V
I |} [}
RES ° T
=+
Fig. 2.98

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

) -
h h=2 h-n

2 5 10
1 1 1 1
—+—-+— Vl——szé
2 510 10 5
081N —-0.1V,=5 ...()
Applying KCL at Node 2,
Bh Vs Va=(=50)
10 4 2
1 1 1 1
—— N+ —+—+= sz—ﬂ
10 10 4 2 2

—0.1% +0.857; = -25 (i)
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Solving Eqgs (i) and (i),

Vi =261V
V =-29.1V
PRI PN
2 2
I, = ViV, _ 2.61-(-2.91) _317A
10 10
I3=L§;50=—291+50=1045A

" SET I WHRYW  Find currents I, I, and I; and voltages V, and V), for the network shown in Fig. 2.99.

I, 02Q I, 0.3Q l; 0.1Q
120V 5 — 110V
Fig. 2.99
Solution Applying KCL at Node q,
I, =30+1,
120V, 304 V, =V,
0.2 0.3
36-03V,=184+02V,-0.2V,
05V,-02V, =342 ..()
Applying KCL at Node b,
12 +[3 =20
V, =V, +110—V;, 50
0.3 0.1
0.1V,—-0.1V,+33-0.37V, _ 50
0.03
0.1V,-04V,=-324 ...(ii)
Solving Eqgs (i) and (ii),
V,=112V
Vy =109V
. 120V, _120-112 _40A
0.2 0.2
I _VaVy =112—109=10A
0.3 0.3
_ 110-V, _ 110-109 _10 A

T 01 0.1
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" SEINICWHEW  Calculate the current through the 5 Q resistor for the network shown in Fig. 2.100.

v, 30

Fig. 2.100

Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

4+E+M:0
2 3

1 1 1
—e -1 =4
2 3 3

0831 =033V, =-4

Applying KCL at Node 2,
VooV Va=(20) Va-Vs o
3 2 5
—1V1+(1+l+1)V2—1V3:—@
3 3 25 5 2

~033V,+1.03V, =02 V; =-10

Applying KCL at Node 3,
i-hh Vs _g
5 4
1 1 1
—=Vot+|=+t—1|V3=8
5° (5 4) ’

—02V,+045V; =8

Solving Egs (1), (ii) and (iii),

V,=-876 V
V,=-9.92V
V,=1337V

Vi—V, 13.37-(-9.92)

Current through the 5 € resistor = 5 = =4.66 A

5

v, 5Q Vs
AVAVAY, — "\ NNV ®
RO %29 e (Das
—|—20V
L

...(ii)

-..(iif)
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" SEINICWHIW  Find the voltage across the 5 82 resistor for the network shown in Fig. 2.101.

9A
)
N
40
AMA
20 y, 50
Vi V3
40
% 100 Q £200
12vT
L
Fig. 2.101

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

=12 n-r rn-n
+ + +
4 2 4
11 1 1 1 12
bt — |V ——V3 =9+ —
4 2 4 277 4 4
Vi—0.5V,—025V; =—6

9=0

Applying KCL at Node 2,
Vy — —
VL B Bl
2 100 5
1 11 1 1
——V+|=+—+=|Vo—=V3=0
2 2 100 5 5
0.5V +0.71V,-02V5=0

=0

Applying KCL at Node 3,

Vi — -
ol Vs Bs=h
5 20 4

=9
1 1 I 1 1
——Vi—=Vo+|=+—+—=|V3=9
4 5 5 20 4

0257, —02V,+05V;=9

Solving Egs (1), (i1) and (iii),
V=635V
V, =11.76 V
V3 =2588V

Voltages across the 5 € resistor =V5 -}, =25.88—11.76 =14.12V

2.49

-..(ii)

... (i)
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" SEINI WY  Determine the current through the 5 Qresistor for the network shown in Fig. 2.102.

36V 4Q
1 W
V. 20 v, 50Q
1 M ° W ——
3A §4Q %1009
=+
Fig. 2.102

Solution  Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

Vo ViV Vi=36-7s
4 2 4

Vi —0.57,-025V; =12

Applying KCL at Node 2,

V, — —
h-h v V-V _
2 100 5
1 1 1 1 1
-Vt =+—+=|Vo—=V3=0
2 100 5 5
051 +071V,-0213=0

Applying KCL at Node 3,

Vizhh V3 V3=(=36)-V
5 20 4

1 1 1 1 1

——WN—-—=V+|=t—+—=|V5=-9

4 5 5 20 4
0251 -02V,+05V;=-9

=0

Solving Egs (i), (i1) and (iii),
Vi=13.41V
V, =7.06 V

V;=-847V

V,—V3  7.06—(-8.47)
5 5

Current through the 5 € resistor =

=3.11A

20 Q

(i)

-..(ii)

-.(iii)
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" SEINICWRYW  Find the voltage drop across the 5 2 resistor in the network shown in Fig. 2.103.

s

Fig

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

V- _
W V2+V1 V3
5 4
1 1 1 1

e | A A
(A P

04511 -02V,-0.25V; =-1 (1)
Applying KCL at Node 2,

1 =0

h-h n
51

1
—lV]+(—+1) V=2
5 5

=2

02N +12V,=2 ...(ii)
Applying KCL at Node 3,

2

Vs V3 —-N
342 Li2=0

1 11
— N+l =+=|V==2
4 2 4

—0.25V,+0.75V; = =2 ...(iii)

Solving Egs (1), (ii) and (iii),
Vi=-4V

V2 =1V
V;=—4V
Vso ==V =1-(-4)=5V
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" SEINNCWHLN  Find the power dissipated in the 6 2 resistor for the network shown in Fig. 2.104.

Vi
3Q % 10 20
6 Q
20V v, A
5A 50Q
Fig. 2.104

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

n-20 -, V-V
1 A i NS Sl T

0
3 1 2
1 1 1
—+1+— Vl—Vz——I@:Q
3 2 2 3
1.83 1 =V, -0.5V; =6.67 (1)
Applying KCL at Node 2,
B-h V-V _
1 6
"+ 1+] V. 1V—5
1 c) 276"
-N+1.17V,-0.17V3 =5 ...(ii)
Applying KCL at Node 3,
Bi-h B, h-h_
2 5 6
1 1 1 1 1
——WVN—=Vo+|{=+=+=|(V5=0
2 6 2 5 6
0.5V -017V,+0.87V;=0 ...(111)
Solving Egs (1), (i1) and (iii),
=2382V
V=274V
V3=19.04 V
- 27.4-19.04
169=V26V3= ! 690 =139 A

Power dissipated in the 6 Q resistor =(1 392 x6=11.59W

" SENNCWWOR  Find the voltage V in the network shown in Fig. 2.105 which makes the current in

the 10 Qresistor zero.
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2.5 Node Analysis

1

1

1

3Q v, 0Q v, 7Q
A e AMA * A
vV —/— 2Q 5Q — 50V
Fig. 2.105
Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,
WV n h-r_
3 2 10
1 1
—t+—+— |V -—=V,—=V =0
3 2 10 10 3
0937, -0.17,-0.33V =0

Applying KCL at Node 2,
V2—1/1+&+V2—50:0
10 5 7
1 11 1
——Vl+(—+—+— Vz—ﬂ
10 10 5 7 7
0.1 +044V, =7.14
h-n
lLoq = =0
10Q 0
n-r=0
=52.82V

4

Solving Egs (i), (ii) and (iii),
Va

20Q
’WV\_—c-
-20V

80V —

" SENNCWWER  Find V, and V, for the network shown in Fig. 2.106.
50 Q
—\WW\
10Q v,
I\N\/\ °
M2 - Vs
50 Q =
L

Fig. 2.106

Assume that the currents are moving away from the nodes.

Solution

...(ii)

... (iif)
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Applying KCL at Node a,
Va—80+Va—Vb 4220
50 10
1 1 1
—+— V.=V :&—2
50 10 10 50
0.12V,-0.1V, =-0.4 (i)
Applying KCL at Node b,
Vo=Va Vo Vo=Ve ~0
10 50 20
1 1 1 1 1
—V, | —=+t—+— |V ——=V.=0
10 10 50 20 20
Node c is directly connected to a voltage source of 20 V. Hence, we can write voltage equation at Node c.
V. =20 ...(111)
Solving Eqgs (1), (i1), and (iii),
V,=3.08V
Vy =7.69V

V=V, -V, =3.08-7.69=-4.61V
Vy=V, -V, =7.69-20=—-1231V

" SEINICWWIR  Find the voltage across the 100 Qresistor for the network shown in Fig. 2.107.
50 Q

200 vy 200

Fig. 2.107
Solution
Node 4 is directly connected to a voltage source of 20 V. Hence, we can write voltage equation at Node 4.
v, =60 ...(1)
Assume that the currents are moving away from the nodes.
Applying KCL at Node B,
Ve — —
5=Va Ve=Vc Vs
20 20 20
1 1 1 1 1
Vit =+ —+— |V ——Vc=0.6
20 (20 20 20) B0
—0.05V,+0.15V3-0.05V- =0.6 ...(ii)

=0.6




2.5 Node Analysis
Applying KCL at Node C,

VeV VeV Ve=12 Ve _
50 20 50 100

1 1 11 11 12
——VA——V3+( + JVC

—t—t—+— =—
50 1 20 50 20 50 100 50
~0.02¥,—0.05V5 +0.1V. = 0.24

Solving Eqs (i), (i), and (iii),
Ve =31.68V
Voltages across the 100 € resistor =31.68 V

EXAMPLES WITH DEPENDENT SOURCES

" SEINICWWERN Find the voltage across the 5 Qresistor in the network shown in Fig. 2.108.

v, 1 200

100 10Q

30/ —( 50V

—/

Fig. 2.108

ZAQD ;59

Solution From Fig. 2.108,

V=50 ¥, -50
20410 30

1

Assume that the currents are moving away from the node.
Applying KCL at Node 1,

Vi W+301 V;—50
—+ +
5 10 30
Vi —50
30 Vi -50
=1 +
5 10 30
v, 2% =50 ¥, 50
+ +
5 10 30

2=

V]+30(

Solving Eq. (i1),

=20V
Voltage across the 5 Q resistor = 20V

2.55

.. (i)

..(i)
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" SCINIIWHNLW  For the network shown in Fig. 2.109, find the voltage V..

V, 40 Q
. AW
Iy
0.6A D 100 Q T 50 Q Noa2v,
251,
Fig. 2.109
Solution From Fig. 2.109,
v,
I, =— ..@
Y100 N
Assume that the currents are moving away from the node.
Applying KCL at Node x,
251, +0.6 = — Vo  Vs=02V;
100 50 40
25( 8 )+ _ Ve Ve 08V
100 100 50 40

e — |V, =06
4100 50 40

0.2V, =-0.6
V,=-3V

" SENNCWNER  For the network shown in Fig. 2.110, find voltages V, and V.

5 05V

Vi
—\W +—>—

200 §1OQ

h D 20V oo <D4A
T

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

Fig. 2.110

,_Vi=20 K-05V -V,
20 5

1.1 05), |1

—t——— |V ~=V, =3

205 5 5
0.15%-02V, =3 (D)
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Applying KCL at Node 2,

V,+0.5V, - -
L H0S-N V2 V2—40
5 210

05 1 11 1
05 Dy Lel Ly, o420
5 5 5210 10

—0.1%+08V, =8

4

...(ii)
Solving Eqgs (1) and (i1),
V=40V
V=15V
" SENACWWIW  Determine the voltages V, and V, in the network of Fig. 2.111.
0.5Q v, 1Q V,
AN——oro AW
2V = 0.25Q v, Z1a
Fig. 2.111
Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,
_ V. _
V-2 +——+ dinll =0
05 025 1
1 1 2
—+——+1 |V -V =—
05 025 0.5
TV; -V, =4 _
...(1)
Applying KCL at Node 2,
— V.
u + _2 + Vl — 0
1 1
2 V2 =0
V2 =0
...(ii)
From Eq. (1),
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" SCINIIWWIR [n the network of Fig. 2.112, find the node voltages V,, V, and V.

7 1Q A 1Q Vs o2V
° AW ° AW I
- Vi+
2A D 20 20 =220
e
Fig. 2.112
Solution From Fig. 2.112,
Vi=h -V

Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

i hoh
2 1
1
(§+1JV1—V2=2
L5V =V, =2
Applying KCL at Node 2,
V, — _
- ol
1 2 1
1
—V1+(1+5+1JV2—V3:0
N+25V,-13=0
At Node 3,

V;—4V, =2
V-4V =) =2
AN -4V, +V3=2
Solving Eqgs (ii), (iii) and (iv),
Vi=-133V
V, =—4V
V;=-8.67V

4V

...(ii)

...(iii)

...(1v)
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" SENNCWNER  For the network shown in Fig. 2.113, find the node voltages V, and V.

3Va (4 <D1A 210 §0.259CD2A )21,

.|||—

Fig. 2.113

Solution From Fig. 2.113,
h-r
()

Y05

Assume that the currents are moving away from the nodes.

Applying KCL at Node 1,

3V2+1:ﬁ+u+3
1 05

...(ii)

Applying KCL at Node 2,

5=V2—V1+ 1Z +2(V1—V2)
0.5

1 2 11 2
——t+t— N+ —+——-— |V, =5
0.5 0.5 0.5 025 0.5
2V +2V,=5 ...(iii)

Solving Eqgs (ii) and (iii),
=131V

V,=1.19V
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" SENNCWWNER  Find voltages V, and V, in the network shown in Fig. 2.114.
V1
—>

7 h 20 V,
>\ VV

§1Q 4) 2l

sa(D) §1Q

L

Fig. 2.114

...()

Solution From Fig. 2.114,
I = h-rn
2

Assume that the currents are moving away from the nodes

Applying KCL at Node 1,
s hh
1 2

1
(1+—+1]Vl —le =5

2 2
...(ii)

KT N1, —K

Applying KCL at Node 2,
& IV‘ +Vl—2_21] +V

i =V;
Vo=V +V; =2( ‘ : 2]+V1
3 Vl =3 Vz
h=r ...(iii)
Solving Egs (ii) and (iii),
=25V
V, =25V
" Example VB Find the power supplied by the 10 V source in the network shown in Fig. 2.115.
2Q
AW
10V 4Q
i) | RS- L

10 A D §29




2.5 Node Analysis  2.61

Solution  Assume that the currents are moving away from the nodes.
From Fig. 2.115,

Vs =V +10-V, -.-(1)
Applying KCL at Node 1,

o4 A 0=V K=V
2 4 2

11 1 1 1 10

—+—+= (N =+=|Va=-10——

2 4 2 4 2 4
128V, —N 75V, = 17 &

Applying KCL at Node 2,
—10—- _
Va hW n-nh.n_, v,
4 2 1

V10—V, V=W V-
2 ? Ly 22 1+T2=4(V1+1O—V2)

=0

..(i)

————— 4 V1+(l+l+1+4 V2:£+40
\4 2 4

—4.75V+5.75V, =425 ...(111)
Solving Eqgs (ii) and (iii),
=-11.03V
V, =-172V
N+10-7, -11.03+10—-(-1.72)

Loy = = =0.173 A
10V 4 4

Power supplied by the 10 V source =10 x 0.173 =1.73 W

" SETNNCWRIN  For the network shown in Fig. 2.116, find voltages V, and V.

0.03 V,
—>
2 YO R I\ 2
+V, -
X Iy
+
0.4 A D = 1000 40 Q _) 80l
=
Fig. 2.116
Solution From Fig. 2.116,
V-
I, =— ..(ii)

740
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Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

04=2 17" 603 v,
100 20
04=2 V2 Lo 030n-m)
100 20
1 1 1
—+—+0.03|V;—-] —+0.03|V; =04
100 20 20
0.09% —0.08, =0.4 ...(iii)
Applying KCL at Node 2,
h-h N n-r_
20 40 40
1 1 1 1 1
V| —+—+— |V, —— V3 =0
20 20 40 40 40 |
—0.05V,+0.17, —0.025V; =0 .- (1v)
For Node 3,
Vs
V3 =801,=80] = |=2V;
3 y (40) 2
2V2—V3:O (V)
Solving Eqs (ii1), (iv) and (v),
=40V
Vz =40V
V; =80V

" SETNIJWRYR  Find voltages V,, V) and V, in the network shown in Fig. 2.117.

2Q

4A<D §1Q 21, §59

Solution From Fig. 2.117,

Assume that the currents are moving away from the nodes.



2.6 Supernode Analysis 2.63

Applying KCL at Node a,

4 =

Va Va_Vc Va_z_Vb
—+ +
1 2 2

1 1 1 1
I+—=+—= |V, ==V, —=V.=5
2 2 2 2

2V, =05V, =05V, =5 (1)
Applying KCL at Node b,
Vb+2—Va+Vb—VC ol
2 3
Vb+2—Va+Vb—VC _5 V,-V,
2 3 2
Vr2=Vo ViV
2 3
1 1 1 1
-—-1 Va+(—+— Ve +{1== [V, =~1
2 \2 3 3
-1.5V,+0.83V,+0.67V.=-1
...(11)
Applying KCL at Node c,
Vel Ve,
3 5
Vo=V Ve _Va=Ve
3 5 2
1 1 I 1 1
V==V +|=+=+={V.=0
2 3 3 5 2
-0.5V,-033V,+1.033V. =0 ...(111)
Solving Eqs (i), (i), and (iii),
V,=4303V
Vy =388V
V.=333V

EXJ| suPerRNODE ANALYSIS

Nodes that are connected to each other by voltage sources, but not to the reference node by a path of voltage
sources, form a supernode. A supernode requires one node voltage equation, that is, a KCL equation. The
remaining node voltage equations are KVL equations.
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Example YR LW Determine the current in the 5 Qresistor for the network shown in Fig. 2.118.

20V

%29

2Q
‘f AN ‘(2 “ ‘{3
5Q
10 A D 3Q 10
va
b
Fig. 2.118

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

1OZK+M
3 2
11 1
—+— Vl——V2=10
3 2 2

0.8311-05V, =10
Nodes 2 and 3 will form a supernode.
Writing voltage equation for the supernode,
V=13 =20
Applying KCL at the supernode,

V, — _
Z—VI+E+V3—10+&:O
2 1 5 2

1 1 1 1
——V+| =+l |+ =+=|V5=2
2 2 5 2

0.5V, +1.5V,+0.7V; =2

Solving Egs (i), (i) and (iii),

v, =19.04 V
V,=11.6V
V,=-84V

V;—10  —8.4-10

Ico =
5Q 5 5

...

...(ii)

...(iii)

=-3.68 A
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" EINN WL Find the power delivered by the 5 A current source in the network shown in Fig. 2.119.

v, 1ﬁv v,
30
10
2A (D v, Q 5A =50
20
=
Fig. 2.119

Solution  Assume that the currents are moving away from the nodes.
Nodes 1 and 2 will form a supernode.
Writing voltage equation for the supernode,

V-V, =10 ..(1)
Applying KCL at the supernode,

2 N N Tl
3 5 1

1 1 1
N+ =+1|Va—|=+1|V5=3
3 @ )2 & )3
03371 +1.2V,—1.33V; =3 ...(ii)

Applying KCL at Node 3,

BV Vi=Va Vs _
3 1 2

0

1 1 1
——WN-=-Vo+|=+1+=|V3=0
3 3 2

0331 -V, +1.8315=0 ....(iii)
Solving Egs (i), (i1) and (iii),
Vi =13.72V
V, =372V
V3 =451V

Power delivered by the 5 A source=5V,=5%x3.72=18.6 W
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" SETUIJWRIEW 11 the network of Fig. 2.120, find the node voltages V,, V, and V.

Solution  Assume that the currents are moving away from the nodes.
Applying KCL at Node 1,

J ViV Vil
0.33 0.5
1 1 1 1
—t+—|V-——=Vo——=V;=4
033 0.5 0.33 0.5
50311 -3.03V,-2V;=4 ..(1)
Nodes 2 and 3 will form a supernode.
Writing voltage equation for the supernode,
Vs—=V,=5 ...(11)
Applying KCL at the supernode,
h-n,n n B-h_,

033 02 1 05
11 11 1
———— |+ =—=+—|Va+|1+—|V3=0
033 0.5 033 02 0.5
~5.037;+8.03V,+3V; =0 .. .(iii)

Solving Egs (1), (ii) and (iii),
V=262V
V,==0.17V
V; =483V

EXAMPLES WITH DEPENDENT SOURCES
" Example y W  For the network shown in Fig. 2.121, determine the voltage V..

|—
v, 6V V, 11Q
. 1 W Vs
+ OV, -
3Q 40 10Q
()12
2A —"SV 2V,

Fig. 2.121



2.6 Supernode Analysis

Solution From Fig. 2.121,
Vi=V-V1;

Assume that the currents are moving away from the nodes.
Node 1 and 2 will form a supernode.
Writing voltage equations for the supernode,

VI_VZ =6

Applying KCL at the supernode,
v, - —_8— -
_ 1+5+V2 2VX+V2 8 V3+V2 V3
4 10 7 11
Nn+5s V=-20,-V;) V,-8=V; V-V
_Nt> 7 (2 3)+ 2 3, 270

2

2

4 10 7 11

lV1+ i_l+l+l V2+ l_l_i V3:2_§+§
4 10 5 7 11 5 7 11 4 7
0.25V+0.133V, -0.033)53 =1.89

Applying KCL at Node 3,
V3—V2+V3+8—V2
11 7
1 1 1 1
———— V2+(—+— V3=—12—§
17 \11 " 7 7

-0.2331, +0.233V; =-13.14

+12=0

Solving Egs (i), (i1) and (iii),

V=18V
V2 =42V
v =—-60.6V

" SETNNCWRIM  Find the node voltages in the network shown in Fig. 2.122.

6 Q

=40V

Fig. 2.122

Solution From Fig. 2.122,
b
5

For Node 4,
Vi=40

2.67

...()

..(i)

...(iii)

...()

...(ii)
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Applying KCL at Node 1,

...(1i1)
Nodes 2 and 3 will form a supernode,

Writing voltage equation for the supernode,
Vy =1

V3—V2:5Ix=5( ]:Vz—V]

N=2V,+r;=0 ...(iv)
Applying KCL to the supernode,
ha-h 7 Vs VsV
5 20 15 2
aoh 7o V5 V5—40
5 20 15 2
1 11 1 1
—— N+ =-+— |2+ —=+=|15=20
5 5 20 15 2
1 1 17

—VN+-V+—V;=20
5 1 4 2 30 3 (v)

=0

0

Solving Eqs (iii), (iv) and (v),
V=10V
V, =20V
V3=30V
Vy=40V

" SEINCWREW  Find the node voltages in the network shown in Fig. 2.123




Exercises 2.69

Solution  Selecting the central node as reference node,

=-12V Q)
Applying KCL at Node 2,
n-n_rn-rn_,,
0.5 2
1 1 1 1
-——WN+|—+= |V —-=V;3=14
0.5 05 2 2
—2N+25V,-05V;=14 ...(11)

Nodes 3 and 4 will form a supernode,

Writing voltage equation for the supernode,
Vi=Vy=02V, =020, —1)

021 +V; =12V, =0 ...(111)
Applying KCL to the supernode,
M_O‘SVX +V_4+u=0
1 2.5
Vs =1, Va1

—05(V, =) +Vs+ =0
VN -n)+V, 53

1 1 1 1
05— N —-|=+05{Va+=V3+|1+—{V4=0
2 2.5

2.5 2
0.1 V=V, +05V3+1.4715=0 ...(1v)
Solving Egs (i), (ii), (iii) and (iv),
Vi=-12V
Vy=—4V
V;=0
Vo=-2V

Exercises

KIRCHHOFF’S LAWS
21 Find/ and V, in the network shown in Fig. 2.124. 2.2 Find V| and V, in the network shown in

Fig. 2.125.
9|V 18|V
& H
—0
12V_ V, =10V
+0
| |
H '
Vi 3V
Fig. 2.125
Fig. 2.124 [2V,5V]

[-5A,-15V]
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2.3 Find the values of unknown currents in the
network shown in Fig. 2.126.

5A
/R
N Y12 A
I3 A
SN S YN Y7V YV
10AY7A hia B |BA —~ la
-
8 A
Fig. 2.126

[[,=2A,1,=2A,1; =4A,1, =10 A]

2.4 Find the current in the branch XY as shown in

Fig. 2.127.
160 A 0.05 Q 40 A
X AMA >
= 0050 0-10 S 0050
< AW >
50 A 010 Y 70A
Fig. 2.127
[40 A]
2.5 Find [ and V; for the network as shown in
Fig. 2.128.

Fig. 2.128

[3A,19V]

In the network shown in Fig. 2.129, find the
voltage between points 4 and B.

5Q

2.6

A 3Q

30V

2A<D

30 B
Fig. 2.129

[5V]

2.7  In the network shown in Fig. 2.130, find the
voltage between points 4 and B.
5Q 4 Q
B
10Q 230V 60 10Q
A L w1l
15Q 5V 4Q 20V
Fig. 2.130
[30 V]

MESH ANALYSIS

2.8  Find the current through the 10 Q resistor in

the network shown in Fig. 2.131.

6Q 2V 10Q 5Q
AVA —AW AW

5V —

240

215Q T 20V

Fig. 2.131
[0.68 A]

2.9 Find the current through the 20 Q resistor in
the network shown in Fig. 2.132.

15 Q

H
WW
N
o
e}

20V

N
o
<
(6]
e}

[1.46 A]

Find the current through the 10 € resistor in
the network shown in Fig. 2.133.
10 Q 30 Q

2.10

10 A D




2.11 Find the current through the 1 € resistor in the
network shown in Fig. 2.134.

AW

£30Q <D1A 220

2Q

oV
_l,

Fig. 2.134
[0.95 A]

2.12 Find the current through the 4 Q resistor in the
network shown in Fig. 2.135.

E|5V
II

5AQ> 220

(DzA 240

Fig. 2.135
[1.33 A]

2.13 Find currents /, and /, in the network shown
in Fig. 2.136.

41,
M a
/
DAY )
o

5V

20
10/y

Fig. 2.136
[0.5A,0.1A]

2.14 In the network shown in Fig. 2.137, find V5 if
element 4 is a

(i) short circuit
(i1) 5 Q resistor
(ii1) 20V independent voltage source, positive
reference on the right
(iv) dependent voltage source of 1.5 i}, with
positive reference on the right

(v) dependent current source 5 i, arrow
directed to the right

2.71

Exercises

i 10Q

NI
S5

Fig. 2.137

[69.4V,72.38V,73.68 V,70.71V,97.39 V]

2.15 Find currents /,, [,, and /; in the network

shown in Fig. 2.138.
2Q
% 39 ’2) é

154 (4) D ) 10

[15A,11A,17 A]

Fig. 2.138

2.16 Find currents /, in the network shown in Fig.

2.139.
20Q 25Q
AW AW
2a(}) 100 Dis, S50 MDsa
Iy
Fig. 2.139
[8.33 A]
2.17 Find currents /, in the network shown in Fig.
2.140.
5 f, 19V 20 4Q
— W AW
3ovI G 4A Ay 15, 25V
Fig. 2.140
[-12 A]
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NODE ANALYSIS

2.18 Find the current /. in the network shown in
Fig. 2.141.

IX

5Q

AW

20 Q
AW

>

24\ — 20 Q — 36V

2A

Fig. 2.141

[-0.93 A]
2.19 Find V, and Vj, in the network shown in
Fig. 2.142.
v 1Q v, 2Q
A .B AW

2Q

—[ 1V
Fig. 2.142
[2.88 V,3.25 V]

2.20 Find the current through the 6 € resistor in the
network shown in Fig. 2.143.

10V 2Q
| —AW

4A<D 210Q

Fig. 2.143

2a(d) =20 1A =42y

250 (Ds/.\ 260

[2.04 A]

2.21 Calculate the current through the 10 € resistor
in the network shown in Fig. 2.144.

10Q
WW
AW AW
40Q 20
25V D §7Q C 12V
AW AW
20 30
Fig. 2.144

2.22

2.23

2.24

2.25

[1.62 A]

Find the current through the branch ab in the
network shown in Fig. 2.145.

100 10
AN AV a
20
10V— %109
20
AN b
10
Fig. 2.145
[0.038 A]

Find the current through the 4 Q resistor in the
network shown in Fig. 2.146.

40 10V
AW i
20 20
AW AW

220 220 Q 5A

Fig. 2.146
[1.34 A]

Find the current through the 4 Q resistor in the
network shown in Fig. 2.147.

2A

2Q
@ A
20 6V 2V
—AA—! 1
2Q§ 30 ;49
3A
Fig. 2.147

[1A]

Find the voltage V in the network shown in
Fig. 2.148.



Objective-Type Questions 2.73

N 2.28 Determine ¥V, in the network shown in
10 V,S 20 Fig. 2.151.
4 10 50 Q
I ) § A
4V 8V 20Q 20Q
—VVV AAY%
[ ]
; +
[-4.31 V] _
2.26 Find the currents ¥, in the network shown in
Fig. 2.149. Fig. 2.151
3V,
< [140 V]
2.29 Find the voltage ¥, in the network shown in
5Q . Y
AN N Flg. 2.152.
o 0.5V,
4v, ~
7A CD §4 Q § 60 Y T+
159§ <D4A§39 O §209 v,
Fig. 2.149 i
[2.09 V] L
. : . Fig. 2.152
2.27 Find the voltage V, in the network shown in
Fig. 2.150. [-10'V]
1 2.30 Find the voltage ¥, in the network shown in
3¢ Fig. 2.153.
MWy 0.8V,
1Q V, 05Q =
—\VV\ AYAYAY o0
Y yve @
1V = 3/ § 05Q + 8A
sA(}) 5Q% v, 2250
Fig. 2.150
[6.2 V] Fig. 2.153
[25.9 V]
Objechve—Type Questions
2.1 Two electrical sub-networks N, and N, are + 5Q _
connected through three resistors as shown /YO\/\>/
in Fig. 2.154. The voltages across the 5 Q
resistor and 1 Q resistor are given to be 10 V M /1\{3\/3/ N,
and 5 V respectively. Then the voltage across 10
the 15 € resistor is + /\é\\//\’—
(a) —-105V (b) 105V )
(©) -15V d 15V Fig. 2.154



2.74
2.2

2.3

24

r(D

2.5

V1:

2.6

Network Analysis and Synthesis

The nodal method of circuit analysis is based
on
(a)
(b)

KVL and Ohm’s law

KCL and Ohm’s law

(c) KCL and KVL

(d) KCL, KVL and Ohm’s law

The voltage across terminals a and b in
Fig. 2.155 1s

20 a 1Q
A% o—ANN———

off

1V 20

b
Fig. 2.155
(a) 05V (b)y 3V
(c) 35V (d 4V
The voltage V,, in Fig. 2.156 is

20
NVVV T

§1OQ

Fig. 2.156
(a) 48V (b) 24V
(c) 36V (d) 28V
The dependent current source shown in
Fig. 2.157.

50
NVVV

16V

+
§129 Vo

6 Q

20V —

S50

Fig. 2.157

delivers 80 W
absorbs 80 W
delivers 40 W
absorbs 40 W

(a)
(b)
(©)
(d)

If V=4 in Fig. 2.158, the value of / is given
by

2.7

1Q
o 1
) 40 220 20 v
Is i
Fig. 2.158
(@ 6A (b) 25A
(c) 12A (d) none of these

The value of V.,V and V, in Fig. 2.159
shown are

+ V- +V, - +V,-

[ Jev

Fig. 2.159
(a) —6,3,-3 (b)y -6,-3,1
(¢) 6,3,3 (d 6,1,3
2.8 The circuit shown in Fig. 2.160 is equivalent
to a load of
/ 2Q
o >
240 o
O
Fig. 2.160
4 8

a) —Q b) —-Q
(a) 3 (b) 3

(b)y 4Q d 2Q

29

Inthe network shown in Fig. 2.161, the effective
resistance faced by the voltage source is

L
4

> —>

Y




Answers to Objective-Type Questions 2.75

(a) 4Q b)) 3Q all resistors are doubled, the value of the node
voltages will
(c) 2Q (d 1Q (a) become half
(b) remain unchanged
2.10 A network contains only an independent (c) become double
current source and resistors. If the values of (d) none of these

Answers to Objective-Type Questions

2.1. (a) 2.2. (b) 2.3. (c) 2.4. (d) 2.5. (a) 2.6. (d) 2.7. (a)
2.8. (a) 2.9. (d) 2.10. (b) 2.11. (b) 2.12. (b) 2.13. () 2.14. (b)



6.2 Network Analysis and Synthesis

" Example WA Find mesh current I, 1, and I, in the network of Fig. 6.

50 —/'2|Q j5Q

Fig. 6.2

Solution  Applying KVL to Mesh 1,
10 £30°=(5—,;2)1, -3, -1)=0
(8-j2)I, - 3L, = 10£30
Applying KVL to Mesh 2,
-3, -1)-;5L,-5(1,-1,)=0
3L+ @ +/5L,-5L,=0
Applying KVL to Mesh 3,
SEL-L)-2-2),=0
=SL+(7-/2),=0
Writing Eqgs (1), (ii) and (iii),

2.

—AA— | ro00
I D S22 ) Zon ) %ZQ
2 T

o

.. ()

.. (i)

..., (iii)

8-j2 3 0 I 10£30°

-3 8+j5 -5 ||LL|= 0
0 -5 T7-j2|| L5 0
By Cramer’s rule,
10£30° -3 0
0 8+j5 5
0 -5 7-j2

I, = - =1.434£38.7° A
8—j2 3 0
-3 8+j5 5
0 -5 T7-j2
8—j2 10£30° 0
-3 0 -5
0 0 7-2
I, = =0.693£-22°A

8—j2 -3 0
-3 845 -5
0 5 1-2

8—j2 -3 10£30°
3 845 0
0 -5 0
I = : =0.476.13.8° A
8—j2 -3 0
-3 845 -5
0 -5 7-2




6.2 Mesh Analysis 6.3

" S EINI IR /i the network of Fig. 6.3, find the value of 'V, so that the current through (2 + j3) ohm

impedance is zero.

5Q 20 3Q 40
—AAA— T

D) )

Fig. 6.3

30£0°V

Solution Applying KVL to Mesh 1,
30£0° - 51, —j5(1, - 1) =0

(5 +j51, —j51,=30 £0° (1)
Applying KVL to Mesh 2,
-5, -1)-2+,3)L,-6(,-1,)=0
751, + (8 +;8) L, — 61, =0 ...(i1)
Applying KVL to Mesh 3,

—6(I,-1,)—-4L,-V,=0
—-6L,+ 10L,=-V, ...(1i1)
Writing Eqgs (1), (i1) and (ii1) in matrix form,
545 —j5 o|ln] [30z0°
-j5 848 —6|| L |=
0 -6 10|15

o
|
S

By Cramer’s rule,
5+j5 30«£0° 0
—-Jj5 0 -6

0 -V, 10
I, = : . =0
545 —=j5 0
—j5 8+j8 -6
0 -6 10
(5+j5)(=6V2)—(30)(-/50)=0
v, = 100 556 450y
30+ /30

" DTGNS Find the value of the current I, in the network shown in Fig. 6.4.
40 10430°V
-

+

20.£0°V (r\); ) j10Q ) 20Q
- I I

10Q 4Q _jaq
|3>

20 Q
Fig. 6.4

4Q




6.4 Network Analysis and Synthesis

Solution Applying KVL to Mesh 1,
20£0° - (4 —j4)T, —j10(1, = L) = 10(I, = 1,) = 0

(14 +;6)1, —j101, — 10L,= 20 L0 .. (1)
Applying KVL to Mesh 2,
—10(I, - 1) —10£30" = 20L, - (4 —j4) (1, - 1,)=0
101, + (24 +j6) I, — (4 — j4) I, =-10£30° ... (i)
Applying KVL to Mesh 3,

=10, -1) -4 -4, -1,)-200,=0
=10l - (4 —jHL,+ (34— 9L, =0 ... (iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,

14+ 6  —j10 -10 I, | 20£0°
—j10 24+ j6 —(4—jd||1, |=]|-10230°
-10  —(4-j4) 34-j4 ||1; 0

By Cramer’s rule,

14+ j6  —j10 20£0°
—-j10 24+ 6 —-10£30°
-10  —(4-j4) 0

I; = =0442£-14° A

14+ j6 -10 -10
—j10  24+j6 —(4-j4)
-10 —(4—j4) 34-j4

" S EINI RN Find the voltage V,, in the network of Fig. 6.5.

10 150Q 100 Q

D

Tw»—fme

100 Q 4Q j200Q
96 Q )

{0
10£0°V

W >

Fig. 6.5

Solution Applying KVL to Mesh 1,
-96 1, —(100+4 +,200) (I, - 1)+ 10 £0°=0
(200 +,200) I, — (104 +;200) I, = 10 £0° ..(1)
Applying KVL to Mesh 2,
—(1-,/50-100) I, - (100 + 4 +;200) (I, —=1,)=0
— (104 +;200) I, + (205 +150) L,=0 ...(ii)
Writing Egs (i) and (ii) in matrix form,

200+ j200  —(104+ ;200)][ 1, ] [102£0°
—(104+ j200) 205+ 150 ||L,| | O



6.2 Mesh Analysis
By Cramer’s rule,

‘10400 —(104+ j200)

0 205+ /150
200+ j200  —(104+ j200)

—(104+ j200) 205+ ;150
200+ j200  10.£0°
—(104+ j200) 0
200+ j200  —(104+ ;200)

—(104+ j200) 205+ j150

V,z =100I, — (4 + j200)(I, —I,)

=100(0.045.£26.34°) — (4 + j200)(0.051.£2.72x107> ° = 0.045.£26.34°)

=0.058 £-92.65° V

=0.051£2.72x107°A

=0.045£26.34° A

" SENICNHW  For the network shown in Fig. 6.6, find the voltage across the capacitor.

LY L

_j2 0
3o b

+
5.0°V @

1Q

%ﬂﬂ

AYAYAY

Fig. 6.6

Solution  Applying KVL to Mesh 1,
50°-(1+ 21, -2(L, - 1) -1+ j3)(I; -13)=0
4+ 75 -2I, —(1+ j3)I; =5£0°
Applying KVL to Mesh 2,
2L -5)-3>+j2(I1, -13)=0
2L +(5-2)1, + j2I3 =0
Applying KVL to Mesh 3,
-1+ /3L -LI)+/2( -L)-(1+ /DI =0
-1+ 3+ j2I, +(2+ j2)I; =0 .
Writing Eqgs (1), (i1) and (iii) in matrix form,
4+ j5 -2 -1+ L 520°
-2 5-2 j2 L[=] O
—-(1+3) j2 24+ 2 || 15 0

6.5

...()

..(ii)

. (iii)



6.6 Network Analysis and Synthesis

By Cramer’s rule,

4+j5 5£0° —(1+/3)

2 0 2
—A+/3) 0 24,2

) I | 0.65,130.51° A
4+ j5 -2 -1+ 3)

2 s5-j52 5
_(1+/3) j2  2+j2
445 =2 5.0°
2 5.2 0
—d+3) 2 0
=4t J =0.91/-2151°A
4+j5 -2 —(1+/3)
2 5-j2 )2
—[A+3) 52 2+ ;2
V, = (=j2)(1s —1y) = (- j2)(0.91/-21.51°—0.65/130.51°) = 3.03/~123.12° V

" SEINICNWA  Find the voltage across the 2 2 resistor in the network of Fig. 6.7.

3Q Ao
AVAVAY, 000
2Q +
2/30°A D ,) ,> @ 8.,45°V
Iy _pa " -
Fig. 6.7
Solution For Mesh 1,
I, = 2/30° ...(0)

Applying KVL to Mesh 2,

—(2-j2)(I; -1;)— jlI, -8£45°=0
(2-j2)I, - (2- j1I, =8£45° ...(ii)
Substituting I, in Eq. (i),

(2-72)(24£30°) = (2— jDI, =8£45°

| —(8£45°)+(2— j2)(2£30°)
- 2-j1

Vag =2(L —1,)=2(2£30°=3.19£ - 65°) = 7.82./84.37° V

I =3.19/-65° A




6.2 Mesh Analysis 6.7

" SEINICNRI  Find the current through 3 Q2 resistor in the network of Fig. 6.8.

3Q 5Q
AVAYAY
2Q
10 1£0°A §j1 o)
L) g @)
Fig. 6.8

Solution  Applying KVL to Mesh 1,
10£0° - 721, =31, - 1(I; -1,)=0
4+ ;)1 -1, =10£0° ..(1)
Meshes 2 and 3 will form a supermesh.
Writing current equation for the supermesh,
13 —12 :1400 (11)
Applying KVL to the outer path of the supermesh,
—1(T, —1;)-5I; — jlI; =0
11—12—(5+j1)13 =0 (111)
Writing Eqgs (i), (ii) and (iii) in matrix form,
4+ 2 -1 0 I, 10£0°
0 -1 1 I, [=| 1£0°
1 -1 -5+ |15 0

—_—

By Cramer’s rule,
10£0° -1 0
1£0° -1 1
0 -1 =5+ /1)

I = =2.11£-28.01° A
4+ 72 -1
0 -1 1
1 -1 —(5+/1)

Tig=1=2.112/-2801°A

" SEINICNRR  Find the currents I, and 1, in the network of Fig. 6.9.

60 2v,
MV t

+
+
0.0°v () D V, == 3 QD §39
- | - |

2




6.8 Network Analysis and Synthesis

Solution From Fig. 6.9,

V,=-730,-1)

Applying KVL to Mesh 1,
920°-61; + j3(I,; -1,)=0
(6—-j3)I; + 731, =9£0°
Applying KVL to Mesh 2,
Jj3({I, -I;)+2V, =31, =0
j31, = 3L +2[—j3(1, -1,)]-31, =0
JOL+3-j9I, =0

Writing Egs (ii) and (iii) in matrix form,
6-j3 j3 |[L|_[9£0°
j9  3-j9|L| | 0

‘940"

By Cramer’s rule,

0 3-/9

11:
6— ;3
j9 3

jo

6 j3
j9 3

12:

" SENII KW Find the voltage across the 4 Qresistor in the network of Fig. 6.10.

j3

’ —1.3.2.49° A
i3 ‘

-Jj9
‘6— j3 9.£0°

=l _124,-1595° A
i3 ‘

_]9

6.£30°V ;
j2 Q
AN T
[ N iy
X _/1 Q
21,
I1 |2
Fig. 6.10

Solution From Fig. 6.10,
Ix = Il
Applying KVL to Mesh 1,

2L +6£30°+ jI(I; -1,)-21, =0
=21, + 6 £30°+ j1I; — jlI, =21, =0

(4— iDL, + jlI, = 6.£30°

...()

..(ii)

... (i)

...

...(ii)



6.3 Node Analysis 6.9

Applying KVL to Mesh 2,
21+ j1(I, - 1) — j21, 41, =0
21, + jlI, = j11; — j21, - 41, =0
2-/DL =(4+/DL =0 ..(iii)

Writing Eqs (i1) and (ii1) in matrix form,
4-j1 Jjl I | [6£30°
2—71 -4+ H||L| | o

‘4 —jl 6£30°

By Cramer’s rule,

2—j1 0
I, = - . =0.74/-291° A
4-j1 Jjl
2—j1 —(4+ 1)

Vig =41, = 4(0.74£-2.91°) = 2.96 /- 2.91° V

XN | ~noDE AnALYsIS

Node analysis uses Kirchhoff’s current law for finding currents and voltages in a network. For ac networks,
Kirchhoff’s current law states that the phasor sum of currents meeting at a point is equal to zero.

" DEINTJCAMEN /1 the network shown in Fig. 6.11, determine V and V.

j6Q v, 3a v, j5Q

10£0°V

Solution Applying KCL at Node a,
Vo =10£20° V,  Vi=Vi

=0
j6 —j6 3
I 1 1 1 10£0°
e L Va ——Vb =
jo j6 3 3 j6
0.33V, —0.33V, =1.67£-90° ..()
Applying KCL at Node b,
Vb _Va +&+&: 0
3 j4 1
1
— =Nk l+i+i V, =0
3 3 74 1

~0.33V, +(0.33— j1.25)V, =0 ..(ii)



6.10 Network Analysis and Synthesis
Adding Eqgs (i) and (i1),
—j1.25V, =1.674-90°
_ 1.67/-90°
—j1.25

g =1.3420°V

Substituting V, in Eq. (i),

0.33V, —0.33(1.34£0°) =1.67£-90°
_L.73£75.17°
033

=5.24,-7517°V

a

" D EIWJCAMYR  For the network shown in Fig. 6.12, find the voltages V, and V,
5Q v, 4Q v, 2Q

50£0°V 50£90° V

Applying KCL at Node 1,
V,-50£0° V; V-V,
—_  +—+——==
5 j2 4

0

1 1 1 1
—+—+— Vl——VZZIOZOO
572 4 4

(0.45—- 0.5V, —0.25V, =10£0°
Applying KCL at Node 2,
V _ _ [e]
2, =V N Vv, +V2 50490 _
4 -2 2

0

1 1 1 1

——Vi+| —+——=+—= |V, =25290°
4 4 —j2 2

—0.25V; +(0.75+ j0.5)V, = 25£90°

Writing Egs (1) and (ii) in matrix form,
0.45- ;0.5 —-0.25 Vi | | 10£0°
—-0.25 0.75+ 0.5 || Vo | |25£90°
By Cramer’s rule,
10£0° —0.25
j25  0.75+ 0.5
V) = - =24.7/72.25°V
0.45- 0.5 -0.25
—-0.25 0.75+ 0.5

0.45-;0.5 10£0°
-0.25 25290°

’0.45 -j0.5  —0.25 ‘

V, = =34.34.52.82°V

—025  0.75+ j0.5

...()

..(i)



6.3 Node Analysis

" BEINIECNER  Find the voltage V ,, in the network of Fig. 6.13.

j5Q
2Q o000
—VW—A j10Q —
00
1=10,0° A ——¢1 —»'T
ANN———T00
3Q j4Q
Fig. 6.13
Solution Applying KCL at Node 1,
tosoo=Y1"Y2, Vi
2 3+/4
1 1 1
V,——=V, =10£0°
2 3+ j4 + j4 2
(0.62-;0.16)V, —0.5V, =10£0°
Applying KCL at Node 2,
V, -V, Vz Vo
2 j5 ]10
1 1 1 1
——=Vi+|[=+—+— (V2 =0
2 2 j5 jl1o

—0.5V, +(0.5— j0.3)V, = 0

Writing Egs (1) and (i1) in matrix form,
0.62-0.16 -0.5 Vi | |10£0°
-0.5 0.5-,03|[V,| | ©

10£0°  -0.5
0 05-;03

By Cramer’s rule,

_ ‘ =21.8256.42°V
‘0.62—]0.16 0.5 ’

0.5 0.5-;0.3
0.62—0.16 10£0°
0.5 0
V= :
0.62—-;0.16 -0.5
0.5 0.5-;0.3
V= V2 =18.7£87.42°V
21.8£56.42°
(j4) = &( 14)=17.45293.32° V
3+ 4 3+j4

Vi =V, — Vg =(18.7287.42°)— (17.45.93.32°) = 2.23./34.1° V

=18.74£87.42° V

Vi =

6.11

...()

...(ii)



6.12 Network Analysis and Synthesis

" SEINICNWER  Find the node voltages V,and V,in the network of Fig. 6.14.

v, e v,
| |

20 § oV, 2 Q D 2./30° A

Fig. 6.14

Solution Applying KCL at Node 1,
Vi V-V
2 -1

1 1 1
—+— Vl_ 2—f V2:0
2 —j1 Jjl

05+ /HVi—(2+ 1)V, =0 ...(1)
Applying KCL at Node 2,
- V2
-1 j2
1 (1 1)
fV] +l—_+_—JV2 =2/30°
J1 -1 j2
—j1Vy+ 0.5V, =2/30° ...(i1)

=2/30°

Writing Egs (1) and (i1) in matrix form,

05+1 -2+, n][vi] [ o
—j1 jO.5 ||V, | |2«£30°

By Cramer’s rule,

0 -2+ j1
2/30° j0.5
vV, = , — =2.46/130.62° V
0.5+,1 =2+
—Jjl1 j0.5
0.5+ /1 0
-j1 2/30°
Vv, = ‘ — =1.23/167.49°V
0.5+,1 -2+
—jl j0.5

" EINAXWEW [ the network of Fig 6.15, find the voltage V, which results in zero current through

4 2 resistor.
5V, 4Q V; 2Q

+
50.0°V r\)




6.3 Node Analysis

Solution Applying KCL at Node 1,
V;=50£0° V, V,—V;
—_  t—+———=
5 2 4
l+L+l V1—1V3 =10£0°
5 2 4 4
(0.45— j0.5)V; —0.25V; = 10.£0°

0

Applying KCL at Node 3,

V3—V1+ V; +V3—V2=
4 2 2

0

1 1 1 1
=V +| =+—+=|V3=0.5V,
4 4 —j2 2

—0.25V; +(0.75+ j0.5) V3 = 0.5V,
Writing Egs (i) and (ii) in matrix form,
0.45- 0.5 -0.25 Vi | [10£0°
[ —0.25 0.75+ j0.5:|[V3:| B [O.SVz ]

By Cramer’s rule,

10£0° -0.25
0.5V, 0.75+ 0.5  10(0.75+ j0.5)+0.125 V,

'710.45-j05 025 0.55/—15.95°
025 075+ /0.5

‘0.45—_,‘ 0.5 10£0°

Vi o 025 0.5V;| _0.5V,(045-,05)+25

; ‘0.45—]0.5 -0.25 ’ 0.55/ -15.95°
025  0.75+ 0.5
Vi —-V;
Lig=———=0
Vi=V;
10(0.75+ j0.5) +0.125V, _ 0.5V,(0.45— j0.5)+2.5
0.55/-15.95° 0.55£-15.95°

7.540.125V, — j 5=2.5+0.225V, — j0.25V,
5+ j5=V,(0.1- j0.25)

,=—F P 962611320V
0.1-,0.25
" SEININWEN  Find the voltage across the capacitor in the network of Fig. 6.16.
12/30°V
AR
e
2/60° A (D 1 Q 2Q  TT20Q

Fig. 6.16

6.13

...()

..(ii)



6.14 Network Analysis and Synthesis

Solution Nodes 1 and 2 will form a supernode.
Writing the voltage equation for the supernode,

V-V, =12/30° (1)
Applying KCL to the supernode,
Wi + V2 + V2 =2.260°
jl 2 =52
(—/DVi+(0.5+ j0.5)V, = 2260° ...(1)

Writing Egs (i) and (ii) in matrix form,

1 ~1 Vi1 [12£30°
—ji1 0.5+j0.5||V,| | 2£60°

By Cramer’s rule,

1 12£30°
—j1  2£60°
Vo= =18.55/157.42° V
‘—jl 0.5+j0.5‘

V.=V, =18.55£157.42° V

XN suPERPOSITION THEOREM

The superposition theorem can be used to analyse an ac network containing more than one source. The
superposition theorem states that in a network containing more than one voltage source or current source,
the total current or voltage in any branch of the network is the phasor sum of currents or voltages produced
in that branch by each source acting separately. As each source is considered, all of the other sources are
replaced by their internal impedances. This theorem is valid only for linear systems.

" SETGICEICRYE  Find the current through the 3 + j4 ohm impedance.

5Q j5Q
NN
. 30 ~
50£90°V f\) 50«£0°V
- j4 Q +
Fig. 6.17
Solution 50 50
Step I When the 50 £90° V source is acting alone (Fig. 6.18) MWV r
GB+/905) o ) 30
7y :5+W:6354232 Q 50.,90° V@
. - j4 Q
T = _S0£907 =7.87£66.8° A
6.35£23.2°

Fig. 6.18



By current division rule,
Jj5

6.4 Superposition Theorem 6.15

I'= (7.87466.8")(—) =4.15,85.3° A(l)

3+ /9

Step II When the 50£0° V source is acting alone (Fig. 6.19)
4
N 53+ j4)

Z; = — 6.74.£68.2°
TP e
4 (e}
p =0 s g2
6.74.268.2°

By current division rule,

5

5Q j5Q
M
30 B
Q
50.,0°V
jaQ +
A
Fig. 6.19

1”7 =(7.42/- 68.2°)(8—} =4.152-94.77° A(T)=4.152853° A({)

+ j4

Step III By superposition theorem,

I=1'+1"=4.15 /853°+4.15 £85.3°=8.31 £85.3°A ({)

" SEITICRER  Determine the voltage across the (2 + j5) ohm impedance for the network shown in

Q 20/30° A

Fig.6.20.
j4 Q /3 Q
AN ||
+ 20
5020V ()
- j5Q
Fig. 6.20
Solution

Step I When the 50£0° V source is acting alone (Fig. 6.21)

50£0°

=————=542/-7747° A
2+ j4+j5

Voltage cross (2 +j5) Q impedance
V' = (2+4/5) (542 £-77.47°)=29.16 £—9.28° V
Step I When the 20£30° A source is acting alone (Fig. 6.22)
By current division rule,

4
I= (204300)(]—‘) =8.68£42.53° A
2+ 59

Voltage across (2 +;5) Q impedance
V7= (2+/5) (8.68 £42.53°) =46.69 £110.72° V

-j3 O

j4Q

50£0°V

Q 20./30° A

j5Q

Fig. 6.22



6.16 Network Analysis and Synthesis

Step III By superposition theorem,
V=V +V”’"=29.16 £-9.28° + 46.69 £110.72° =40.85 £72.53° V

" S EINICCHER  Determine the voltage V., for the network shown in Fig. 6.23.

j5 Q
A /2 QQ 420° A

50£0°V 5Q

Solution
Step I When the 50£0° V source is acting alone (Fig. 6.24)

——j2 Q

50/0°V

Fig. 6.24
Vs =5020°V

Step I When the 420° A source is acting alone (Fig. 6.25)
j5 Q
A —j2Q D 4,0°A
5Q
'B
Fig. 6.25

V;BZO

Step III By superposition theorem,
Vs =Vig+Vg =5020°+0=5020°V



6.4 Superposition Theorem 6.17

" SETNIECWON  Find the current I in the network shown in Fig. 6.26.

| 40 /3 Q ‘f5||9 20
> VVV W ||

+ +
13 £25°V r\) Q 3 £50° A 20 £-30°V
Fig. 6.26
Solution
Step I When the 13.£25° V source is acting alone (Fig. 6.27)
40 3 Q —j5 Q 20
ANA—TT /]
+
13 £25°V f\) D
— II
Fig. 6.27
4 o
I'= 13 %5 =2.057£43.43° A (>)
6—j2

Step I When the 20£-30° V source is acting alone (Fig. 6.28)

40  BQ e 29
NNN—T000 ]
—+
C 20 £-30°V
I// -
Fig. 6.28

[ 20£-30°V

=316 -11.57° A() =3.16£168.43° A( )
~J

Step III  'When the 3£50° A source is acting alone (Fig. 6.29)

40 30 B2 g
—VWA—=000 11

Q 3 /50° A




6.18 Network Analysis and Synthesis

By current division rule,

2-J5
6—j2
Step IV By superposition theorem,

I=1+1"+1" =2.057 £43.13° + 3.16 £168.43° + 2.56 £-179.77° A=4.62 £153.99° A (—)

1”7 =3/50°%

=2.56.£0.23° A(«)=2.56£—179.77° A(— )

" Example WM Find the current through the j3 2 reactance in the network of Fig 6.30.

—j5 Q
| |
|1
+ +
5/30°V @ 2 Q §f5 Q 9 10.£60° V
7000
i3 Q
Fig. 6.30
Solution
Step I When the 5£30° V source is acting alone (Fig. 6.31)

-5 Q
[
1]

+
5./30° v@ —j2Q g j5 Q

500
3 Q

Fig. 6.31

When a short circuit is placed across j15 € reactance, it gets shorted as shown in Fig 6.32.

| ]
[

>
>

+
5./30°V @ ——_jpQ

j3 Q

Fig. 6.32

£30°
=23 55 000 Ace)
—j5+j3



6.4 Superposition Theorem 6.19

Step I When the 10£60° V source is acting alone (Fig. 6.33)
-5 Q
| |
|

+
—-j2Q g j5 Q @ 10.,60° V

7000
j3 Q
Fig. 6.33
When a short circuit is placed across the —j2 € reactance, it gets shorted as shown in Fig. 6.34
-5 Q %
| | <
I D
+
%/5 Q r\) 10.£60° V
7000
j3 Q
Fig. 6.34
10£60°
I"=———=5Z150°A(—)=5£-30° A («)
—-j5+j3

Step III By superposition theorem,
I=1T+1"=252120°+5/-30°=3.1£-621°A (<)

" SEINI NI  Find the current 1, in the network of Fig. 6.35.

2/0°A
©
—-j2 Q 6 Q
I || AN
+
8 Q 3149 6) 10£30° A
Fig. 6.35
Solution _j|2|Q 6Q It
. ) . K I VYV
Step I 'When the 10£30° V source is acting alone (Fig. 6.36) 0 +
ZT=6+M=8A64424.1209 8 Q §f49 @10430°v
ja4+8— ;2 !
10£30°
p =080 6 5880 A
8.64.,24.12°

Fig. 6.36



6.20 Network Analysis and Synthesis

By current division rule,

i4
1) =1.16£588°x—21 " =056,81.84°A (1)
§— j2+ j4

Step I When the 220° A source is acting alone (Fig. 6.37)

2/0°A
©
|(’)’ | I Vv
8 Q % j4 Q
Fig. 6.37
The network can be redrawn as shown in Fig. 6.38.
-2 Q -2 Q

| | | |
’” II

o

8Q gjﬂ! §GQ <D240°A 8Q

(a) (b)

NNN—=

] (D) 2oa

(1.85 + j2.77) Q

Fig. 6.38
By current division rule,

1.85+ j2.77

Iy =2£0°x%
1.85+ j2.77+8— ;2

=0.67£51.83° A (1)
Step III By superposition theorem,

Io =I5 +15 =0.56.£81.84°+0.67.£51.83°=1.19£65.46° A ()

" SEIICNWER  Find the current through the j5 Q2 branch for the network shown in Fig. 6.39.

1

j5Q 3Q —Jj4 Q

+ + +
10 £0°V 15 £90° V 20 £0°V

Fig. 6.39



6.4 Superposition Theorem 6.21
Solution
Step I When the 10£0° V source is acting alone (Fig. 6.40)

I/
=

5o 50 — 40
+
10 £0°V
Fig. 6.40
Z; = j5+ 270 _ 404261660
3—j4
4 (e}
= 10208 g -6166°A (=)
4.0461.66°

I//

Step II When the 15£90° V source is acting alone (Fig. 6.41) <

z; =3+ Y0 099, 814700 /59 30 e
Jj5—J4
+
4 o)
; 329" _ 74171470 A 15 £90° V

T 2022/-81.47° >

By current division rule, Fig. 6.41

—i4
I =0.74,171.47°x — =

—=296/-853°A(«<)=296£17147°A (=)
—j4+j5

Step III  'When the 20 £0° V source is acting along (Fig. 6.42)

IIII IT

< <
) L

j5Q 30 —j4 Q
+
20 £0°V
Fig. 6.42
3(j5
Zr = —j4+L_) =3.47/-50.51°Q
3+ /5
Lo 20200 5650510 A
3.47£-50.51°
By current division rule,
3 ,
1”7 =5.76£50.51° % — =2.96/-8.53° A (< )=2.96/£171.47° A (—)

3+ 5



6.22 Network Analysis and Synthesis

Step IV By superposition theorem,

I=T+1"4+1"=2.484-61.66°+2.96£171.47°+2.96 £171.47° = 4.86 L—-164.41° A

" SEIICNWLE  Find the voltage drop across the capacitor for the network shown in Fig. 6.43.

—_j2Q

20 £45°V
Yy
+ +\r\_)/_ VWV
20Q 10 £0°V
- —— 20
5 Q 4Q
Fig. 6.43
Solution -
r
Step I When the 10£0° V source is acting alone " > MV
(Fig. 6.44) s 5 12) 00 10 L0°V
Zp =4+ L0270 -
2+ j542-j2
=7/-591°Q /5 40
= & =1.43/591° A
7/-591° Fig. 6.44

By current division rule,

2+ 75

I =(143£591°) — 2>
2+ j5+2— 2

J: 1.543724° A (—)

Step II When the 20£45° V source is acting alone (Fig. 6.45)
20 £45°V .

2Q |
I\
2Q
§4Q —_— —j2Q
j5Q
Fig. 6.45
42+
Zr =(2— j2)+ 225D _yug,_gs40 0
4+2+J5
, /45°
I 20245° 4 46/5384°A ()= -446/5384°A ()

T 448/ —8.84°



6.4 Superposition Theorem

Step III By superposition theorem,
I=01"+1"=1.54/3724-446,53.84°=3.01£-117.78° A
V. =(—j2)I=(—;2) (3.01£-117.78°) =6.02.£152.22° V

" SEINICNWEN  Find the node voltage V, in the network of Fig. 6.46.

5/30°V

10 £0° A D 50 20 %/109<>5400v

Fig. 6.46
Solution

Step I When the 10£0° A source is acting alone (Fig. 6.47)

5£30°V
Vy Ty
*—AN—TTT
1020°a (}) 50Q 20 g 00
Fig. 6.47

Applying KCL at Node 1,

Vl AR N 2 Vi- V) =10£0°
5 5/30°

(1+ ! )V{ _ V, =10£0°
5 5/30° 5/30°
(0.37—-70.D)V, —(0.17— jO.1)V, =10.£0°

Applying KCL at Node 2,

Y-V V2 V2
52300 2 j10

=0

1 . 1 1 1
- VvV + +——+ V2 0
5/30° 5/30° 2 ]10

—(0.17 = jO.1)V; +(0.67— j0.2)V; =

6.23

...(0)

..(ii)



6.24 Network Analysis and Synthesis

Writing Eqgs (i) and (ii) in matrix form,

037-j0.1 —0.17-0.1][ v; | _[1020°
~(0.17-0.1)  0.67-j02 |[vi| | 0

By Cramer’s rule,
0.37-;0.1 10£0°
—(0.17-;0.1) 0
037-;0.1 —(0.17-,0.1)
-(0.17-;0.1)  0.67- ;0.2

V, = =857/-336°V

Step I When the 520° A source is acting alone (Fig. 6.48)
5£30°V

5§2§ 20 gﬁog D5400A

Fig. 6.48

V2 _+V_2+V_2:540°
5.30°+5 2 410

(0.61£-11.93°)V, =520°

V, =82/1193°V
Step III By superposition theorem,
V,=V,+V, =857/-336°+8.2/11.93°=16.62.4.12° V

" Example WA  Find current through inductor in the network of Fig. 6.49.

8,/135°V
()
SO&
2 Q -1 Q
[
500 B

2,0°A D §QQ Q 2/90° A

8/135°V
Fig. 6.49 ()
Solution j2Q |'D -1 Q
. . OO | |
Step I When the 8£135° V source is acting alone (Fig. 6.50)
Applying KVL to the mesh, © 50 ©
8/135°—(—;jHI'= ;2I'=0 T T

4 [e]
3D g s A ()=82-135° A ()

I/
jl Fig. 6.50



Step I When the 2£0° A source is acting alone (Fig. 6.51)

6.4 Superposition Theorem 6.25

2 Q -ji1 Q

7000

2,0° A D ;29

Fig. 6.51

The network can be redrawn as shown in Fig. 6.52.
By current division rule,

il _jl
17 =220°| —L | =2.0°| =L | = 22180° A(—)
1+ 2 il

Step III ' When the 2.290° A source is acting alone (Fig. 6.53)

2 Q -1 Q
| |
000 | |

O
§ 2Q Q 2/90° A

Fig. 6.53

The network can be redrawn as shown in Fig. 6.54.
By current division rule,

— 1
1”7 =2 4900(7]] =2/-90°A («<)=2,90°A (=)

—jl+ ;2

Step III By superposition theorem,

I=T+1"+1" =8 £-135°+2/£180°+2/90° =8.49/-154.47°A

Fig. 6.52
12 Q I/N
T —
-1 Q

§ 2Q Q 2,90° A

Fig. 6.54

" SENNCNWHYR  Determine the source voltage V so that the current through 2 £2 resistor is zero in

the network of Fig. 6.55.

3Q 2Q 40
NV NV
+
v, 3 Q ——j3Q

Fig. 6.55

+
20£90° V



6.26 Network Analysis and Synthesis
Solution

Step I 'When the voltage source V _is acting alone (Fig. 6.56)

3Q 2Q 4Q
AN AN A
+
& ) gee ) Lon)
- Iy Py I3
Fig. 6.56

Appling KVL to Mesh 1,
V, =31 - 3L -1,) =0

B+ j3; — j3I, =V, ..(0)
Appling KVL to Mesh 2,
=3 1) = 2L, + j3(I, ~13) = 0
— 3L +21, + j313 =0 ...(i)
Appling KVL to Mesh 3,

—j3(I; —1,)—41; = 0
3L, +(4— )5 =0 ...(iii)
Writing Eqgs (1), (ii) and (iii) in matrix form,
343 =30 Y| [v,
-3 2 3 |L" |=| o0
0 3 4=y 0

By Cramer’s rule,

3+/3 V, 0
~j3 0 3

o0 0 4= sy,
3+/3 -3 0 A
-3 2 3

0 j3 4-j3

Step I When the 20 £90° V source is acting alone (Fig. 6.57)

3Q 2Q 40
AYAYAY AYAYAY AYAYAY
. +
j3Q —-j3Q 20,90° V
I1” I2// I3” -
Fig. 6.57

Applying KVL to Mesh 1,
31— 31 —15)=0
G+ 31 — j3I, =0 ..(0)



6.5 Thevenin’s Theorem 6.27
Applying KVL to Mesh 2,
=3 = 1)) =215 + j3(1, - 15) =0

—j3I +21, + j3L; =0 (i)
Applying KVL to Mesh 3,
315 —15) =415 —20.£90° = 0
315 +(4— j3)T5 = —20.£90° ...(iii)
Writing Eqgs (i), (ii) and (iii) in matrix form,
343 -3 0 N 0
-J3 2 J3 L = 0

0 3 4-73]|r| [-2029°

By Cramer’s rule,

3+ /3 0 0
-J3 0 j3
- 0 —-20£90° 4-;3] —180- /180
T PB+3 =30 B A
-j3 2 Jj3
0 j3 4-3
Step III By superposition theorem,
L=l 4T, = 9+ j12)V, +(-180 - j180) _ 0

A
(9+ j12)V, +(~180— j180) =0
(9+ j12)V, =180+ ;180
V, =16.97£-8.13°V

m" THEVENIN’S THEOREM

Thevenin’s theorem gives us a method for simplifying a network. In Thevenin’s theorem, any linear network
can be replaced by a voltage source V.., in series with an impedance Z._,.

" SETNICENCWEN  Obtain Thevenin's equivalent network for the terminals A and B in Fig. 6.58.
30 4Q Q. —j4Q
vt o4
+ 4Q
50£0°V
= 6 Q

o B

Fig. 6.58



6.28 Network Analysis and Synthesis
Solution
Step I Calculation of V_, (Fig. 6.59)

30 —j4 Q j5 Q —j4 Q
|| T f——o4
50£0°V ) Vo,
- I j6 Q
oB
Fig. 6.59
Applying KVL to the mesh,
50£0°-@B—-j4)I1-(4+,j6)1=0
50£0°

=6.87£-1595° A

(3 j4)+(4+ j6)
V.. =(4+/6)1 =(4+6) (6.87 /~15.95°) =49.5 £40.35° V

Step I  Calculation of Z, (Fig. 6.60)
(3 j4)4+ j6)

Zr, =(j5—j4)+ =483/-1.13°Q
L Ay TRaTyTS
30 —j4 Q j5 Q —j4 Q
|| TO——| f——oA
4Q
<~ Zm
j6 Q
OB
Fig. 6.60
Step III Thevenin’s Equivalent Network (Fig. 6.61)
4.83 £Z-1.13°Q
oA
+
49.5 £40.35° V f\)
oB
Fig. 6.61
" SETNIECWEN  Find Thevenin'’s equivalent network for Fig. 6.62.
50 20 j5 Q
NN || O 0A

+
10430°V@ ;39 §5§2

o B

Fig. 6.62



6.5 Thevenin’s Theorem 6.29
Solution
Step I Calculation of V_, (Fig. 6.63)

5Q —j2 Q 5 Q
AN || OO 0 A
+
10 £30° V r\) §39 §59 Vo,
0B
Fig. 6.63
Applying KVL to Mesh 1,
10 £30° = (5—-,2)1, -3, -1)=0
(8-72)1,-3L,=10 £30° ...(1)
Applying KVL to Mesh 2,
3@ -1)-j5L-5L=0
3L+ (@ +/5L,=0 ...(11)

Writing Egs (1) and (ii) in matrix form;
8—j2 =3 |[n]_[10£30°
-3 8+/5||L| 0

‘8—]2 10.£30°

By Cramer’s rule,

-3 0
I, = - =0.43329.7° A
8—j2 3
-3 845

Vrn =51, =5(0.433£9.7°) =2.16£9.7° V

Step Il  Calculation of Z, (Fig. 6.64) 20 /5 Q
[

7000 0 A

||
_ (5—1‘2)3} }
Zoy =122 122 L isly5
" H5—ﬂ+3 / §59 §39 §59 - Zm,

=[1.94— j0.265+ ;51| 5= (1.94+ j4.735)|5

. o B
_ (1.94+ j4.735)5 L 304.33.4° O
6.94+ j4.735 Fig. 6.64
Step III Thevenin’s equivalent Network (Fig. 6.65)
3.04 £33.4° Q
oA
+
2.16 £9.7°V f\)
o B

Fig. 6.65



6.30 Network Analysis and Synthesis

" SETNTI NN Obtain Thevenin'’s equivalent network for Fig. 6.66.

40 10/4_(<V
A O
20 5 £90°V
j6 Q —j4 Q
—|_ OB
Fig. 6.66
Solution
Step I Calculation of V.,
10 £0°V
4Q
(~)
AE Sanl
20 5 £90°V
D - Vi
j6 Q I L g
_—|— 58
Fig. 6.67
Applying KVL to the mesh,
2+ j6—j4HI-5290°=0
4 [e]
I= SL90° 1.77£45° A
2+ 52

V., =(H4) I+5290° 10 £0°=(4 £-90°) (1.77 £45°) + 5 £90° — 10 £0° =18 £146.31° V
Step II  Calculation of Z, (Fig. 6.67)

4Q
NV 0A
2Q
<~ Zm
j6 0 ———j4Q
OB
Fig. 6.68

6 (— id
Zoy =4+ IO 115, 440300
2+ 52
Step III Thevenin’s Equivalent Network

11.3 £-44.93° Q
0 A

i

o B



6.5 Thevenin’s Theorem

" SETNTI NI Obtain Thevenin's equivalent network for Fig. 6.70.

10 £0° A j159§29

6.31

——OA
3@ “_—j5Q
OB
Fig. 6.70 |
Solution §
0 15Q 220
Step I Calculation of V., (Fig. 6.71) 10.207A
By current division rule, oA
(Jj 30 “—-5Q Vm
I= w =13.42/26.57° A
5—j5+ 15 oB
V=91 Fig. 6.71
=(5 £-90°) (13.42 £26.57°) = 67.08 £—63.43° V
Step I  Calculation of Z, (Fig. 6.72)
— 55+ j15 j15Q 20Q
- CPBHY) _g47, g186° @
—j5+5+ 15
—————O0A
Step III Thevenin’s Equivalent Network 30 ——_j5Q =< Zp,
7.07 £-81.86° Q
oA OB
+ =
Fig. 6.72
67.08 £-63.43°V @ &
oB
Fig. 6.73

" SETNTI XY Obtain Thevenin's equivalent network for Fig. 6.74.

+
20 £0°V f\D

Fig. 6.74



6.32 Network Analysis and Synthesis
Solution
Step I Calculation of V_, (Fig 6.75)

+
20 £0°V f\)

Fig. 6.75

o 20£0°
"1+ 12+ j24

2020°
2780+ j60

=0.49£-36.02° A
=0.2£-36.86° A

V., =(12+24) 1, - (30 +60) I,
= (26.83 £63.43°) (0.49 £-36.02°) — (67.08 £63.43°) (0.2 £-36.86°)
=0.33 Z171.12° V

Step Il Calculation of Z, (Fig. 6.76)

21 Q 50 Q
AN AN
AO0— ——-oB
AT — AT
12Q 240 30Q j60Q
Fig. 6.76

_21(12+24) 50(30+ j60)

Th =47.4/26.8°Q
33+ 524 80+ 60
Step III Thevenin’s Equivalent Network
47.4 £26.8° Q
oA
+
0.33 £171.12°V @
o B

Fig. 6.77



6.5 Thevenin’s Theorem

" SEINICNIER  Find Thevenin's equivalent network across terminals A and B for Fig. 6.78.

0 A
10 50
2 245° A D .
2Q
10 £90° V
_ o B
Fig. 6.78
Solution
Step I Calculation of V_, (Fig. 6.79)
0 A
+
2 /45° A D . Vi
2Q
10 £90° V
- 5B
Fig. 6.79

Applying KCL at the node,

Vin_ Vm =10290°
1+ j2 5

=2./45°

1 1
+— |V =24£45°+2.290°
1+j2 5

(0.57£— 45°)Vyy = 3.7£67.5°
Vo, =6.49/112.5°V

Step Il Calculation of Z, (Fig. 6.80)

O A
1Q
§ 5Q < Zq
2 Q
OB
Fig. 6.80
L= g 4500

S 541+ 52

6.33



6.34 Network Analysis and Synthesis

Step III Thevenin’s Equivalent Network (Fig. 6.81)

+
6.49 £112.5°V @

1.77£45° Q
o A

o B

Fig. 6.81

" SENNACNIYN  Find the current through the (5+ j2) Q impedance in the network of Fig. 6.82.

5Q

AVAYAY;

+ 3Q é 2Q

20 £0°V r\)
) j2Q Q 20 £0° A
50 —_—j2Q
Fig. 6.82
Solution
Step I Calculation of V., (Fig. 6.83)
5Q V,
AVAYAY; *
3Q 2Q
+
o Ao+ °
20 £0°V _m) Vo, Q 20 £0° A
Bo- -2 Q
[
Fig. 6.83
Applying KCL at the node,
V; —20£0 N i _ 20.£0°
5 2—-j2

1
—+ V| =20£0°+4.£0°
5 2-,2

0.51£29.05° V| = 2420°

Vi =47.06£-29.05° V
Vi, =V, =47.06£-29.05° V



6.5 Thevenin’s Theorem

Step Il Calculation of Z, (Fig. 6.84)

5Q
NV
3Q 2Q
A
Z1,
[ 7"
Fig. 6.84
2—j2
Zrn =3+22772 479, 11350 Q
5422
Step III  Calculation of I, (Fig. 6.85)
4.79/-11.35° Q
A
I
+ 50Q
47.06 £-29.05° V f\) /D
B L 2Q
B
Fig. 6.85

_ 47.06/-29.05°
479/-1135°+5+ ;2

" SENNCIREW  Find the current through the 5 2 resistor in the network of Fig. 6.86.

j5Q
00

640°AG> §5Q §4Q ——-pQ <D440°A

Fig. 6.86

=4.73/-39.96° A

L

Solution

Step I Calculation of V_, (Fig. 6.87)

v, B5Q

A
6 £0°A CD Vi 4Q -2 Q CD 4,0°A
T |

Fig. 6.87

6.35



6.36 Network Analysis and Synthesis

Applying KCL at Node 1,

Vi ViV,
4 s

+6£0°=0

11 1
—— |V, = —V, = —6.£0°
4 s Iz

(0.25-0.2)V; + 0.2V, = -6£0°
Applying KCL at Node 2,
Va-Vi V2 g0
J3 -J2

1 (1 1)
(_._)Vl +L_——_—JV2 =4.0°
73 7S Jj2
jO2V+ j0.3V, =4.£0°
Writing Egs (1) and (i1) in matrix form,
0.25-;0.2 jO2|[ V| _|-6£L0°
j0.2 JO3||V, | | 420°
By Cramer’s rule,
‘—640" j0.2

420° j0.3’
=20.8/-126.87°V
0.25— j0.2 j0.2‘

j0.2 j0.3
V=V, =20.8£4-126.87°V
Step I  Calculation of Z, (Fig. 6.88)

1:‘

j5Q

Ao
Zh—> §4Q 20

Fig. 6.88
_A=j2+)5)

= =24/53.13°Q
4— j2+ j5)

Step III  Calculation of I, (Fig. 6.89)

_20.8/-126.87°

L

2.4 £58.

'y

3°Q

...()

..(ii)

0 A

]
L
1, = > =3.1/-14347° A +
24/53.13°+5 20.8 /-126.87°V f\) |
- L

S50

Fig. 6.89

o B



6.5 Thevenin’s Theorem 6.37

" SEINI NI i the network of Fig. 6.90, find the current through the 10 Q2 resistor.
5 £30°V

2Q
O—
+
1Q 10 £0°V
- § 10Q
—j2 Q 50Q
Fig. 6.90
Solution
Step I Calculation of V., (Fig. 6.91) 5 ?3%’ Viosg
Applying KVL to the mesh, H)—VW A
J2I—11-10£0°—51=0 {
1Q 10 £0°V
(j2—6)I =10£0° ”) - Vi
- .I:1.584—161.57 A 20 I .
Writing V_, equation, -
S5T+10£0°—5230°—0— Vg, =0 °B
5(1.584£-161.57°)-10£0°-54£30° = V1, =0 Fig. 6.91
Vi, =5.32£-110.06° V
Step Il Calculation of Z, (Fig. 6.92) 20
AAYAY OA
ZTh:2+M:3.484—21.04°Q 10
5+1-2 § 5Q <~ Zy,
2 Q
Step III  Calculation of I, (Fig. 6.93) oB
3.48 £-21.04° Q .
1 oA Fig. 6.92
+
5.32 £-110.06° V r\) § 10Q
= IL
o B
Fig. 6.93

_5.32/-110.06°
3.48£-21.04°+10

. =0.4/-104.67° A



6.38 Network Analysis and Synthesis

" SENII NI  Find the current through (4+ j6) Q impedance in the network of Fig. 6.94.

20 j5Q 30 ‘{5 @
—\A——T00 AMA— =
+ 40 N
100 £0°V f\) @ 50 £90°V
N P a
Fig. 6.94
Solution
Step I Calculation of V., (Fig. 6.95)
20 /50 3o RO
—\M—T00 ANN— |
(]
+ + +
100 £0°V (\D E\) 50 £90°V
Fig. 6.95
Applying KVL to the mesh,

100£0° —2I — j5I =3I+ j51-50£90°=0
1=2236£-26.57°A
Writing V,, equation,
Vi, =31+ j51-50£90°=0
Vin —(3—75)(22.36 £-26.57°) - 50£90° =0
Vi, =80.61£4-82.88°V

Step Il  Calculation of Z, (Fig. 6.96)

20  j5Q 3 PO
—NA— T l AA— F—
A

Zyy,
T B
Fig. 6.96

_(2+j53-/9)
2+ 75435

H =6.28/9.16° Q



6.5 Thevenin’s Theorem 6.39

Step III  Calculation of I, (Fig. 6.97)

6.28.,9.16° Q
A
L]
+ 40
80.61 /-82.88°V @
S I
L j6 Q
B
Fig. 6.97

_80.61.£-82.88°
6.2829.16°+4+ j6

L =6.52/4-117.34° A

" SENICNRER  Obtain Thevenin's equivalent network across terminals A and B in Fig. 6.98.

I 40Q 2Q
VW oA
-fAQ

+
1040°V@
> 21

o B
Fig. 6.98
Solution 1 4Q 2Q
> AANA o0 o A
Step I Calculation of V_, (Fig. 6.99) L -fo *
Applying KVL to the mesh, e
PPyIng 1040°v@ (2%
10£0° 41+ j1I1-21=0 > 21
1=1.64/9.46°A _
o B
Writing V.. equation,
& Y &4 Fig. 6.99
10£0°—4I-0-V1, =0
10£0°-4(1.64.£9.46°)— V1, =0
Vi, =3.69£-17°V
Step I  Calculation of I, (Fig. 6.100)
From Fig. 6.100, | 40 PO A
I=1 ——\VVV L 7000

Applying KVL to Mesh 1, " e
10£0° -4 + jI(I; 1) =21 =0 10°4°°V@ ) ézu ) "
10£0°— 4L, + j1I; — j1I, =21, = 0 ) ! "
(6— DI+ jII, =10£0° ...(1)

Applying KVL to Mesh 2,
21+ 101, - L) —j2I, =0 Fig. 6.100
211 +j112 _jlll —j212 =0

B



6.40 Network Analysis and Synthesis

Writing Egs (i) and (ii) in matrix form,
6-j71 1 || L |_|10£0°
2—71 —jI|{|L]| | 0
By Cramer’s rule,
6—-;1 10£0°
2—jl1 0
I, =—"——F—=271£4-102.53° A
6-;1 j1
2—j1 —jl1
Iy =1, =2.71/4-102.53° A
Step III  Calculation of Z,
Vv 3.69£-17° ,
Zyy = —2 = =1.36/85.53° Q
Iy 2.71£-102.53°
Step IV Thevenin’s Equivalent Network (Fig. 6.101)
1.36 £85.53° Q
oA
+
3.69 /-17°V (~)
o B
Fig. 6.101
" SETNI NN  Find Thevenin's equivalent network across terminals A and B for Fig. 6.102.
20 4 Q
NV ”O'W—J?A
+
5.£0°V
- ¢ 0.2V, Vv,
1Q
o B
Fig. 6.102
Solution 20 j4Q
. . AAYAY “TO0——0 A
Step I Calculation of V., (Fig. 6.103) N +
) 5.£0°V
From Fig. 6.103, . - ) $ozv, V,= Vi
I=-02V, .. (D) 10 1
Writing V., equation,
o B

—I+5/0°-0-V, =0

Fig. 6.103



6.6 Norton’s Theorem 6.41

0.2V, +520°-V, =0
V, =6.2520°V
Vi, =V, =6.2520°V

Step I  Calculation of I, (Fig. 6.104)

20 4 Q
A% ’ 66(5\—o+ A
+
5.£0°V
- T 0.2V, v, Yl
1Q
- g
Fig. 6.104
From Fig. 6.104, 2Q j4Q
V,=0 NV 00 oA
+
The dependent source depends on the g gy
controlling variable V. When V, =0, the > Y
dependent source vanishes, i.e. 0.2V, =0 as N
shown in Fig. 6.105. 1Q
5£0°
N = =1/-53.13° A °B
1+2+ j4 .
Fig. 6.105

Step IIl  Calculation of Z.,

V. 6.25.20°
Zoy, = —2 = =6.25/53.13° Q
Iy 1£-53.13°

Step IV Thevenin’s Equivalent Network (Fig. 6.106)

6.25 £53.13° Q
o A

+
6.25 £0°V r\)

o B

Fig. 6.106

X3 norTON’S THEOREM

Norton’s theorem states that any linear network can be replaced by a current source 1, parallel with
an impedance L, where 1, is the current flowing through the short-circuited path placed across the

terminals.



6.42 Network Analysis and Synthesis

" SETNTI RN Obtain Norton’s equivalent network between terminals A and B as shown in Fig. 6.107.

3Q /4Q

25 £0°V

-j5 Q

T

Fig. 6.107
Solution

o B

Step I Calculation of I, (Fig. 6.108)

30 j4Q
When a short circuit is placed across (4 —j4) Q impedance,

it gets shorted as shown in Fig. 6.1009.

30 j4Q 25 20°V
N AA%AY 7000 A
25 £0°V
= Iy
B
Fig. 6.109
2520°
N = — =5/-53.13° A
3+ j4
Step I  Calculation of Z,, (Fig. 6.110)
_CHEZ) 53,9000
3+j4+4- 5
Step III Norton’s Equivalent Network
OA
5 £-53.13° A Q) |::|4.53 £9.92° Q
oB
Fig. 6.111

" SETYACNRSM  Obtain Norton’s equivalent network at the terminals A and B in Fig. 6.112.

5Q
AA%AY oA

4 Q

10 £30° A D

4 Q

o B
Fig. 6.112



6.6 Norton’s Theorem
Solution
Step I Calculation of I, (Fig. 6.113)

5Q
AVAVAY 0 A
1Q 40Q
10 £30° A D Yy
2Q j4Q
°B
Fig. 6.113
By series-parallel reduction technique (Fig. 6.114)
50
AVAYAY O A
10 £30° A D [] 1.62 £58.24° Q YIn
°B
Fig. 6.114
1.62./58.24° ,
Iy =(10£30°) =2.69-75° A
1.62£58.24°+5
Step Il Calculation of Z,, (Fig. 6.115)
50
NV oA
1Q 4Q
- ZN
2Q j4Q
o B
Fig. 6.115

14 :
Zy =5+ UHIDEHTD (01 130400
1+ j2+4+ ja

6.43



6.44 Network Analysis and Synthesis

Step III Norton’s Equivalent Network (Fig. 6.116)

2.69 £75° A D |j 6.01.£13.24° Q

Fig. 6.116

" Example (W:YA Find Norton’s equivalent network across terminals A and B in Fig. 6.117.

oA
% jAQ § 10 Q
4 /45° A
D .
§ 3Q E\) 25 /90°V
o B
Fig. 6.117
Solution
Step I Calculation of I, (Fig. 6.118)
A
O
j4Q 10 Q
4 ,45° A D N Yn
3Q 25 /90°V
°B
Fig. 6.118

When a short circuit is placed across the (3+ j4) 2 impedance, it gets shorted as shown in Fig. 6.119.

oA
10 Q
4 /45° A (D \a
+
25 /90° V
oB

Fig. 6.119
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By source transformation, the network is redrawn as shown in Fig. 6.120.
oA oA

=

a245° A (}) O 2.5490°A§1og I 4z45°A(}) (4) 25290°A Y

OB oB
(a) (b)
Fig. 6.120

Iy =4245°+2.5290° = 6.03£62.04° A

Step Il Calculation of Z,, (Fig. 6.121)

0 A
4 Q
; 10 Q -~ Zy
3Q
o B
Fig. 6.121
1 4
b =06 5 6836030 Q
10+3+ j4
Step III Norton’s Equivalent Network (Fig. 6.122)
oA
6.03 £62.04° A D [] 3.68 £36.03° Q
o B
Fig. 6.122

" EINICNWEW  Obtain the Norton’s equivalent network for Fig. 6.123.

10 £0° A 5Q J<Xo)
j5 Q
A
2Q -5 Q

.

Fig. 6.123

6.45
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Solution
Step I Calculation of I, (Fig. 6.124)

10 £0° A 5Q % BQ
j5 Q
7000 A
20 50 Iy
B
Fig. 6.124

By source transformation, the network can be redrawn as shown in Fig. 6.125.
Writing KVL equations in matrix form,

+

5 js|[u]_[s00° 50 £0°V 50
]5 0 12_ 0 -
By Cramer’s rule, 5Q
5 50£0° g 1o
50 ' T
L=""" " l-10,-90°A 2 &>
5 j5
%)
Iy =1, =10£-90° A Fig. 6.125
Step I  Calculation of Z,, (Fig. 6.126)
50 % BQ
j5 Q
00 0
2 —E ~2zy
o
Fig. 6.126
4 Sy (— i
Zy = j5s+ OFPIED) s g
5+ j5— 5
Step III Norton’s Equivalent Network (Fig. 6.127)
OA
10 £-90° A D D 5Q
oB

Fig. 6.127
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" EINI KWW Obtain the Norton’s equivalent network for Fig. 6.128.

+
10445°Vr\)

Solution
Step I Calculation of I, (Fig. 6.129)

Writing KVL equations in matrix form,

Fig. 6.128

15-72 -10+;2 =5 I 10£45°
-10+,72 15-;2 0 L |= 0
-5 0 15+ 21|15 0
By Cramer’s rule,
Fig. 6.129
15—-j2 10£45° =5
-10+ ;2 0 0
-5 0 15+ 2
I, = =1£41.28° A
15-72 -10+j72 =5
-10+,2 15-,2 0
-5 0 15+ ;2
15-j2 —10+4 ;2 10£45°
-10+,2 15-,2 0
=5 0 0
I; = =0.49437.41° A
15-j2 -10+,2 =5
-10+ ;2 15-;2 0
-5 0 15+ ;2

Ty =1, —T, = 049/37.41-1/41.28° = 0.51/-135° A

Step Il Calculation of Z,, (Fig. 6.130)
10qQ ;59 100 /2 0 5Q
) VMV | T NV
-2 Q
Zy o o o
A B A B
5Q 100 AN ANA—TTT
5Q 10 Q 20
2 Q

Fig. 6.130
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. 510 - j2) N 5(10+ j2) — 6700
5+410—-j72 5+10+ ;2

Step III Norton’s Equivalent Network (Fig. 6.131)

0 A

0.51 £-135° A D [] 6.72Q

o B

Fig. 6.131

" SEII KW CW  Find the current through the 8 2 resistor in the Network of Fig. 6.132.

50
X 80 100
20 £0°V @ Q 5.20°A
- j4Q
Fig. 6.132
Solution
Step I Calculation of I, (Fig. 6.133)
50Q
A
100
+
20 £0°V r\) In Q 5.20°A
) B j4Q
Fig. 6.133

When a short circuit is placed across the (10+ j4) Q impedance, it gets shorted as shown in fig. 6.134.

50
A
+
20 £0°V @ In Q 5.20°A
B

Fig. 6.134
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By source transformation, the network is redrawn as shown in Fig. 6.135.

4.20° A D §59 Y Iy Q 5.20° A

Fig. 6.135
Iy =420°+520°=920° A

Step I  Calculation of Z,, (Fig. 6.136)

50
AN
A
o 10 Q
Zy
o
B 4 Q
Fig. 6.136
5(10+ j4
y =200 g 68700 A
5+10+ j4 )
9.,0°A D [] 3.47 /6.87 Q
Step III  Calculation of I, (Fig. 6.137) 8Q
B
9./0°
=———=0.79/-2.08° A .
LT3 47,2687°+8 Fig. 6.137

" SENICNKCW  Obtain Norton’s equivalent network across the terminals A and B in Fig. 6.138.
51

-

100 Q | |7j5Q A
| ©

:

10200V () j100

N

Fig. 6.138
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Solution
Step I Calculation of V_, (Fig. 6.139)

51
| 100 Q -j5Q
| | oA
+ _ +11- +
+
10 200V () 3,-109 Vi,
oB
Fig. 6.139
I= 10207 =0.1£-5.71°A
100+ 410
Writing V., equation,
10£0° =100 I - (—j5)(5I) = V1, =0
10£0°-100(0.1£=-5.71°)+ (j5)(5)(0.1£-5.71°) = V1, =0
Vr, =3.5485.1°V
Step Il Calculation of I, (Fig. 6.140)
51
1 100 Q | |7j5Q A

o

+
1040°v@ %/’10Q Iy

B
Fig. 6.140
By source transformation, the network is redrawn as shown in Fig. 6.141.
| 1000 -j5Q —j251
<
+
10200V () /D %/’109 /> Iy
- Iy I,
B
Fig. 6.141
From Fig. 6.141,
I=1

...()
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Applying KVL to Mesh 1,
10£0°-100I; — j10(X; - 1,) =0
(100+ j10)I; — j10I, =10£0° ...(11)
Applying KVL to Mesh 2,

_10(Ly —1,) + /5T, + j251 =0
—]1012 +]IOI] +j512 +J2SI| =0
7351, — j51, = 0

Writing Eqgs (ii) and (iii) in matrix form, - (i)
100+ 10 —j10][1,|_[10£0°
j35 -S|l | o

‘100+j10 10.£0°

By Cramer’s rule,

i35 0
I, = : —1=0.6£30.96° A
100+ 710 —;10
35 =5

Iy =1, = 0.6230.96° A

Step III  Calculation of Z,,

Vi, 3.5/85.1°
Iy 0.6230.96°

Zy = =5.83./54.14° Q

Step IV Norton’s Equivalent Network (Fig. 6.142)

0 A
0.6 £30.96° A D [] 5.83454.14° Q
o B
Fig. 6.142
XA || MAXIMUM POWER TRANSFER THEOREM Zs

This theorem is used to determine the value of load impedance for which
the source will transfer maximum power. v +<> /B}V
. . . . s (MO 4
Consider a simple network as shown in Fig. 6.143. A L
There are three possible cases for load impedance Z,.

Fig. 6.143
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Case (i) When the load impedance is variable resistance (Fig. 6.144)

Case (ii)

The power delivered to the load is

v \4
Z,+7Z;, R+ jX;+R;

IL ZS: Rs+sz

]

L 1
JR +Rp)? + X2 vf@ An

I

2
P = ]lle R, = |VS| R Fig. 6.144 Purely resistive load
VR + R, + X,

For power to be maximum,

aa_y
dR;
v, (R +R )+ X} -2R (R +Ry) | _ o

[(R+R.)* + X{T
(Re+R.)> + X% —2R, (R, +R,)=0
R?+2RR; + R} + X2 =2R;R,—2R? =0
R +X:-Ri =0
R} =R} + X?

R, =R} + X2 =|z,|

Hence, load resistance R, should be equal to the magnitude of the source impedance for maximum
power transfer.

When the load impedance is a complex impedance with Zs=Rs+jXs
variable resistance and variable reactance (Fig. 6.145) ||
\Y +
I, =—— v - '
t Z,+7, S@ JE Z =R +jX,
Vv
)= ——

32 2
\/(RS PR H X+ XL) Fig. 6.145 Complex impedance load

The power delivered to the load is
2
[Vs|” R,
(Ro+Ru)? + (X + X))

2
P =\l R, =

For maximum value of P,, denominator of the equation should be small, ie. X =—X,.

PZIWF&
(R, +R,)*
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Differentiating the above equation w.r.t. R, and equating to zero,

@y, |2[(RS+RL)2 —2RL(RS+RL)]:O
dr, '* (Ry+R;)?

(Ry+R.)* -2 R, (R,+R,)=0

RZ+2RR; +R; -2 R;R,—2R} =0

RI-RI =0
Ri =R}
RL - Rs

Hence, load resistance R, should be equal to source resistance R, and load reactance X,
should be equal to negative value of source reactance for maximum power transfer.

7, = Z\: =Ry — jX;
i.e. load impedance should be a complex conjugate of the source impedance.

Case (iij) When the load impedance is a complex impedance with variable resistance and fixed reactance
(Flg. 6146) ZSZ RS+jXS

V, L1

“Z.+17, 4
s v, Vs @ 2 Z,=R,+jX,

I,

1 |=
VR + R+ (X, + X, )P
The power delivered to the load is Fig. 6.146 Complex impedance load
2
2 Vi| R,
P=I|"R, = [V

JORy + R +(X, + X, )2
For maximum power,
dp,
dR;,
2| (R 4+ R +(Xs+ X, ) =2 R, (R, +Ry) 0
{(Ry+ Ry )? + (X, + X )"}
(RAB X £ X0 -2 RulR4-R.) =0
RE4+2R R +R*+(X,+X1)*-2R.R,-2R} =0
RE+(X;+X.)*-RE=0
R =R} +(X,+X,)

=0

Vil

Ry =R +(X, + X.)’

=R, + j(X, + X1)|
R+ jXs+ jX 1|
=|Z, + jX.|
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Hence, load resistance R, should be equal to the magnitude of the impedance Z; + jX,, i.e.
|Z; + jX;| for maximum power transfer.

" SEINICNWYE  For maximum power transfer, find the value of Z, in the network of Fig. 6.147 if

(i) Z, is an impedance, and (ii) Z, is pure resistance.

60 -8 Q
| |
AYAYAY |

NS =

Fig. 6.147
Solution Z,=(6—,8)Q
(i) IfZ,is an impedance
For maximum power transfer, Z; = Z,= (6+j8)Q

(if) IfZ, is a resistance
For maximum power transfer, Z; = ‘ZS| = |6 + j8‘ =10Q

" Example CW:S W For the maximum power transfer, find the value of Z, in the network of Fig. 6.148
for the following cases:

(i) Z, is variable resistance, (ii) Z, is complex impedance, with variable resistance and variable reactance,
and (iii) Z, is complex impedance with variable resistance and fixed reactance of j5 £2.

o
20Q 30
10A D
50 5.40°V
o B
Fig. 6.148

Solution Thevenin’s impedance can be calculated by replacing voltage source by a short circuit and current
source by an open circuit.

0 A
2Q
;39 ~Zn,
j5Q
o B

Fig. 6.149
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32+ j5)

= =(2.1+70.9) Q
Th 3+24+ 5 ( /0.9)

For maximum power transfer, value of Z, will be,
(i) Z, is variable resistance
Z; =|Zm|=]2.1+ 0.9 =228Q
(if) Z, is complex impedance with variable resistance and variable reactance

Z,=Zm =(2.1-j0.9)Q

(iti)  Z, is complex impedance with variable resistance and fixed reactance of j5 Q

Z; =|Zny, + j5|=]2.1+ j0.9+ j5|=6.26 Q

6.55

" B EINI RN Find the impedance Z, so that maximum power can be transferred to it in the network

of Fig. 6.150. Find maximum power.

30 30
AN A
+
540°v@ %jSQ —_ 30 DZL
Fig. 6.150
Solution
Step I Calculation of V., (Fig. 6.151)
Ir 30 30
AN AN oA
I
+
5.£0°V @ %j(ig _3Q Vg
o
Fig. 6.151
zr =3+ 2025 51065700
3+ 3 /3
p =Y _4a5/-2657° A
6.71£26.57°
By current division rule,
1= 075/-2657°x— 2> —075.,6343° A

3+,3-3
Vi, = (= 3)(0.75.£63.43°) = 2.24/-26.57° V
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Step Il Calculation of Z, (Fig. 6.152) /:\3/8\/ ’\3/\§/2\, oA
Z.,=[G 173+ 3] (=3)
=3 £-53.12°Q
=(18-24)Q Sma  —-po
. oB
Step III  Calculation of Z,
For maximum power transfer, the load impedance Fig. 6.152
should be a complex conjugate of the source impedance.
Z,=(18+;24)Q
Step IV Calculation of P__(Fig. 6.153)
(1.8-j2.4)Q
A
L1
+
2.24 /-26.57°V r\) (1.8+)2.4)Q
B
Fig. 6.153
2 2
2.24
Pmax:|VTh‘ :| ‘ =07W
4R, 4x1.8
" S EIWICARNN  Find the value of Z, for maximum power transfer in the network shown and find maxi-
mum power.
70 ~j20 Q
Fig. 6.154
Solution
Step I Calculation of V., (Fig. 6.155) I I
100£0° 5Q 7Q
| = 0 =8.94/-63.43° A
5+ /10 + >
o 100 £0°V (~0 +Vrn -
, = 10020°_ 455 /7070 A S A B
7—-j20 10 Q —j20 Q

Fig. 6.155
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Vi, =V, —Vp =(8.94£-63.43°)(j10)—(4.72£70.7°)(—j20) = 71.76 £97.3° V
Step I  Calculation of Z, (Fig. 6.156)

5Q 7Q
AVAVAY, AVAVAY,
AO0— —OB
OO ||
j10Q 20 Q
Fig. 6.156

_5(j10) | 7(=j20) | 50£90°  140£-90°
5+ 710 7-,20 11.18£63.43° 21.19/-70.7°

=(10.23- j0.18) Q

Step III For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.

Z,=(10.23 +0.18) Q

Step IV Calculation of P__ (Fig. 6.157)

(10.23 - j0.18) Q
A
L |

+
71.76 £97.3°V @ (10.23 +0.18) @

Fig. 6.157

_ I Vm P _ 17176

Py = =125.84 W
4R,  4x10.23

" SEIWTICWN  Find the value of load impedance Z, so that maximum power can be transferred to it in
the network of Fig. 6.158. Find maximum power.

3Q
AAAY

+
504450v@ :/ 2
_ L

2Q

10 Q

Fig. 6.158
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Solution
Step I Calculation of V_, (Fig. 6.159)

3Q
AVAVAY,
2Q
+ +0A
50 /45° V f\) Vo
— —OB
| 10 Q
Fig. 6.159
/450
1= 204%° 47/ 18430 A
3+2+ /10

Vin = (24 j10) 1= (2 + j10)(4.47/—18.43°) = 45.6 £60.26° V

Step Il  Calculation of Z, (Fig. 6.160)

3Q
A
2Q
Ao
Zt,
B o
10Q
Fig. 6.160
=220 o6t 072) 0
3+24 /10

Step III  Calculation of Z,
For maximum power transfer, the load impedance should be complex conjugate of the source
impedance.
Z,=(2.64-0.72) Q

Step IV Calculation of P (Fig. 6.161)

(2.64 +j0.72) Q
A
L
+
45.6 £60.26° V f\) (2.64 - j0.72) Q
B
Fig. 6.161
Vo > 145.6
Pmax=| w967 5601w

4R,  4x2.64
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" S EINI MRV Determine the load Z, required to be connected in the network of Fig. 6.162 for

maximum power transfer. Determine the maximum power drawn.

Q
CH00
4.,0°A 20 40 z,
Fig. 6.162
Solution
Step I Calculation of A\ (Fig. 6.163)
j1Q
00 oA
|1 |2 +
4 /0° A 2Q 4Q Vo
oB
Fig. 6.163

I, = 420°%—2 = 1315/-9.46° A
+ 1
Vi =41, = 4(1.315/-9.46°) = 5.26 /- 9.46° V

j1Q
7000 oA
Step Il Calculation of Z, (Fig. 6.164)
ira ] 20 4Q <17,
+
Zoy = 220D 47 17002 (1414 j043) Q
442+ 1 oB
Step III  Calculation of Z, Fig. 6.164
For maximum power transfer, the load impedance
should be the complex conjugate of the source impedance.
Z,=(141-;0.43)Q
Step IV Calculation of P__(Fig. 6.165)
(1.41+j0.43) Q
A
[
+
5.26 £/-9.46° V r\) (1.41 - j0.43) Q
B
Fig. 6.165
2 2
Pmax = |VTh ‘ = |526‘ =491'W

4R,  4x1.41
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" S EINIARER 1 the network shown in Fig. 6.166, find the value of Z, for which the power transferred
will be maximum. Also find maximum power.

5 £60° Q 10 £-30°Q
] ]
L L |

+

+
10 £0°V r\) B’ZL @5490°v

Fig. 6.166
Solution

Step I Calculation of V_, (Fig. 6.167)

5 £60°Q 10 £-30°Q
| 1
[ [

+
1040°V@

Applying KVL to the mesh,
10£0°—=(5£60°)1-(10£-30°)1-5290°=0
11.18£-26.57°—(11.18£-3.43°)I=0
I=1/-23.14° A

Writing V., equation,

10£0°—(5£60°) -V, =0
10£0°—-(5£60°)(1£—-23.14°) = V1, =0
Vmn =6.71£-26.56°V

Step I  Calculation of Z_, (Fig. 6.168)
5 2£60° Q 10 £-30°Q

L] L]
l

Zy,
il

Fig. 6.168

_(5£60°)(10£-30°)
5./60°+10./-30°

- = 4.47/33.43° Q =(3.73+ j2.46) Q
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Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z; =71 =(3.73— j2.46) Q
Step IV Calculation of P__ (Fig. 6.169)

(3.73+2.46)

0A
+ Iy
6.71 /-26.56°V r\) [] (3.73-2.46) Q
OB
Fig. 6.169

3 |VTh‘2 3 (6.71)°

P = = =3.02W
4R,  4x3.73

" SENI KR [ the network shown in Fig. 6.170, find the value of Z | S0 that power transfer from

the source is maximum. Also find maximum power.

+
10 £0°V r\)

Z 8Q

Fig. 6.170

Solution
Step I Calculation of V., (Fig. 6.171)

Applying Star-delta transformation (Fig. 6.172)
j9Q
Z|:Z2=Z3:w:j3g ng
79+ j9+ j9 10 £0°V r\) 7000
V., = Voltage drop across (8 +j3)CQ2 impedence \A>+
Viheo 8Q
B
4 ]
= (8+j3)& =8.54/-16.31°V

8+ j3+ 3 Fig. 6.171
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Z, z,
10 £0°V r\)
A v+
Tha™
5 8Q
Fig. 6.172
Step Il Calculation of Z, (Fig. 6.173)
O
j3Q
j3Q
j3 Q |::| - ZTh
8Q
O
Fig. 6.173
A4 i
Zoy = 3+L285) 55180 4900 = (0.72+ j5.46) Q
Jj3+8+ j3)

Step III  Calculation of Z,
For maximum power transfer, the load impedance should be the complex conjugate of the source
impedance.

Z, =77, =(0.72—- j5.46) Q
Step IV Calculation of P__ (Fig. 6.174)
(0.72 + j5.46) Q

OA
+ .
8.54 /-16.31°V r\) [] (0.72 - j5.46) Q
OB
Fig. 6.174

2
V 2
PmaX:| | _ B _snw
4R,  4x0.72
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" SEINI T  For the network shown in Fig. 6.175, find the value of Z, that will transfer maximum

power from the source. Also find maximum power.

4aSV, j10Q
+
100 £0°V 5Vx
Fig. 6.175
Solution 40 100
Step I Calculation of V_, (Fig. 6.176)
From Flg 6176, 100 £0°V 5V,
V, =41
Applying KVL to the mesh,
100£0°-41—-;10I-5V, =0
100£0°—-(4+j10) I-5(4) =0
I= 100 20 =3.854£-22.62°A
24+ j10
Writing V., equation,
100 £0°—4I-Vy, =0
100£0°—-4(3.85 £—22.62°) = V1, =0
Vr, =86.£3.95°V
Step Il Calculation of I, (Fig. 6.177)
From Flg 6177, N j10Q

4Q2V
Vx:4ll +

In /)
. +
Applying KVL to Mesh 1, 100 £0°V ID B l 5V,

100 £0°—41, =0 -
Il = 25 A

. Fig. 6.177
Applying KVL to Mesh 2,

—j101, =5V, =0
— 101, —=5(41;) = 0
— 101, —=5(100) = 0
I, = 50£90°A
Iy =1, -1, = 25-50£90° = 55.9./— 63.43°A
Step IIl  Calculation of Z.,
Vi, 86/3.95°
Iy 55.9/-63.43°

Ly, = =1.54267.38° Q= (0.59+ j1.42) Q
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Step IV Calculation of Z,
For maximum power transfer, Z; = Zy, = (0.59 — j1.42) Q

Step V' Calculation of P (Fig. 6.178)
(0.59+1.42) @

0 A
+
86 £3.95°V f\) |:] (0.59-/1.42) Q
OB
Fig. 6.178
2
AV 2
Prax = | Th‘ = (86) =3133.9W
AR,  4%0.59

X3 reciPrOCITY THEOREM

The Reciprocity theorem states that ‘/n a linear, bilateral, active, single-source network, the ratio of excitation
to response remains same when the positions of excitation and response are interchanged.’

" SENNCICRTW  Find the current through the 6 Q2 resistor and verify the reciprocity theorem.

AN || |
+
500V @ § 19 20
Fig. 6.179

Solution

Case I Calculation of current I when excitation and response are not interchanged (Fig. 6.180)

1Q —1'1||Q
NN N | | |
+ 1
5,00V (\) ,D j1Q ,> 20
Fig. 6.180

Applying KVL to Mesh 1,
5£0°—11; — jI{I; -1,) =0
1+, DI — j1I, =5£0° (1)
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Applying KVL to Mesh 2,
—]1(12 _Il)+j112 —212 =0
—JjiL +2I, =0 .
. : L : -..(i1)
Writing Egs (i) and (ii) in matrix form,
I+1 —j1|| L | _|5£0°
-j1 2 ||L] | 0
By Cramer’s rule,
1+ 1 5£0°
—jl1 0
I, =—"—=13945631° A
I+/1 —jl
—jl 2
I=1,=1394£5631° A
Case Il Calculation of current I when excitation and response are interchanged (Fig. 6.181)
10 —1'1] |Q
A% | |
ly /) 2Q
o)
I 3 I, £
5.20°V
Fig. 6.181
Applying KVL to Mesh 1,
-1 - j1 —1;) =0
(I+ /D1 = jlI; =0 (i)
Applying KVL to Mesh 2,
—]1(12 _Il)+j112 - 212 -520°=0
—jII] +2I, =-5£0° .. (11)

Writing Egs (i) and (ii) in matrix form,

1+71 =[] [ o
i1 2 ||| |-520°

By Cramer’s rule,

0 —jl
-5£0° 2
I, =————=1384-123.69° A
I+1 —Jl
—-jl 2

I=-1, =1.39256.31° A

Since the current I is same in both the cases, the reciprocity theorem is verified.
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" SEIICKRTM  [n the network of Fig. 6.182, find the voltage V_and verify the reciprocity theorem.

10 Q % B5Q
20 £90° A D N
) +
/5 Q —_joq v,
o
Fig. 6.182

Solution

Case I Calculation of voltage V_when excitation and response are interchanged. (Fig. 6.183)

10 Q 5 Q

20 £90°A G)

By current division rule,

10+ 5)
10+ j5)+(j5-j2)
V, =(—j2)I, =(-;2)(17.46£77.91°) = 34.92 £-12.09° V

I, =(20.£90°) =17.46271.91° A

Case Il  Calculation of voltage V_when excitation and response are interchanged (Fig. 6.184)

(e
+ I,
j5Q
10Q
Vy
5 Q 20 ( 1 ) 20 £90° A

Fig. 6.184

I, =(20£90°) (=/2) =3.12/-38.66°A
(=j2)+(0+ j5+j5)

V, =10+ j5)I, = (10+ j5)(3.12.4- 38.66°) = 34.88./—12.09°V

Since the voltage V_is same in both the cases, the reciprocity theorem is verified.
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